Lin Wenjing, Yao Na, Qian Long, Zhang Xiaofang, Chen Quan, Wang Jufang, Zhang Lijuan
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
Department of Biology and Center for Genomics and Systems Biology, New York University, NY 10003, USA.
Acta Biomater. 2017 Aug;58:455-465. doi: 10.1016/j.actbio.2017.06.003. Epub 2017 Jun 3.
The development of an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging was reported. β-cyclodextrin-{poly(lactide)-poly(2-(dimethylamino) ethyl methacrylate)-poly[oligo(2-ethyl-2-oxazoline)methacrylate]} [β-CD-(PLA-PDMAEMA-PEtOxMA)] unimolecular micelles served as a template for the in situ formation of gold nanoparticles (GNPs) and the subsequent encapsulation of doxorubicin (DOX). The formation of unimolecular micelles, microstructures and the distributions of GNPs and DOX were investigated through the combination of experiments and dissipative particle dynamics (DPD) simulations. β-CD-(PLA-PDMAEMA-PEtOxMA) formed spherical unimolecular micelles in aqueous solution within a certain range of polymer concentrations. GNPs preferentially distributed in the PDMAEMA area. The maximum wavelength (λ) and the size of GNPs increased with increasing concentration of HAuCl. DOX preferentially distributed in the PDMAEMA mesosphere, but penetrated the inner PLA core with increasing DOX concentration. DOX-loaded micelles with 41-61% entrapment efficiency showed fast release (88% after 102h) under acidic tumor conditions. Both in vitro and in vivo experiments revealed superior anticancer efficacy and effective CT imaging properties for β-CD-(PLA-PDMAEMA-PEtOxMA)/Au/DOX. We conclude that the reported unimolecular micelles represent a class of versatile smart nanocarriers for theranostic application.
Developing polymeric nanoplatforms as integrated theranostic vehicles for improving cancer diagnostics and therapy is an emerging field of much importance. This article aims to develop an in situ formed pH-responsive theranostic nanocomposite for anticancer drug delivery and computed tomography (CT) imaging. Specific emphases is on structure-properties relationship. There is a sea of literature on polymeric drug nanocarriers, and a couple of polymer-stabilized gold nanoparticles (GNPs) systems for cancer diagnosis are also known. However, to our knowledge, there has been no report on polymeric unimolecular micelles capable of dual loading of GNPs without external reducing agents and anticancer drugs for cancer diagnosis and treatment. To this end, the target of the current work was to develop an in situ formed nanocarrier, which actively dual wrapped CT contrast agent GNPs and hydrophobic anticancer drug doxorubicin (DOX), achieving high CT imaging and antitumor efficacy under in vitro and in vivo acid tumor condition. Meanwhile, by taking advantage of dissipative particle dynamics (DPD) simulation, we further obtained the formation process and mechanism of unimolecular micelles, and detailed distributions and microstructures of GNPs and DOX on unimolecular micelles. Taken together, our results here provide insight and guidance for the design of more effective nanocarriers for cancer theranostic application.
报道了一种用于抗癌药物递送和计算机断层扫描(CT)成像的原位形成的pH响应性诊疗纳米复合材料的研发。β-环糊精-{聚(丙交酯)-聚(甲基丙烯酸2-(二甲氨基)乙酯)-聚[聚(2-乙基-2-恶唑啉)甲基丙烯酸酯]} [β-CD-(PLA-PDMAEMA-PEtOxMA)]单分子胶束用作原位形成金纳米颗粒(GNP)以及随后包封阿霉素(DOX)的模板。通过实验和耗散粒子动力学(DPD)模拟相结合的方法,研究了单分子胶束的形成、微观结构以及GNP和DOX的分布情况。β-CD-(PLA-PDMAEMA-PEtOxMA)在一定聚合物浓度范围内于水溶液中形成球形单分子胶束。GNP优先分布在PDMAEMA区域。随着HAuCl浓度的增加,GNP的最大波长(λ)和尺寸增大。DOX优先分布在PDMAEMA中间层,但随着DOX浓度的增加会穿透内部的PLA核。载药量为41%-61%的载DOX胶束在酸性肿瘤条件下显示出快速释放(102小时后释放88%)。体外和体内实验均表明β-CD-(PLA-PDMAEMA-PEtOxMA)/Au/DOX具有卓越的抗癌疗效和有效的CT成像性能。我们得出结论,所报道的单分子胶束代表了一类用于诊疗应用的多功能智能纳米载体。
开发聚合物纳米平台作为用于改善癌症诊断和治疗的集成诊疗载体是一个非常重要的新兴领域。本文旨在研发一种用于抗癌药物递送和计算机断层扫描(CT)成像的原位形成的pH响应性诊疗纳米复合材料。特别强调结构-性能关系。关于聚合物药物纳米载体有大量文献,并且也已知一些用于癌症诊断的聚合物稳定金纳米颗粒(GNP)系统。然而,据我们所知,尚无关于无需外部还原剂即可双重负载GNP和抗癌药物用于癌症诊断和治疗的聚合物单分子胶束的报道。为此,当前工作的目标是开发一种原位形成的纳米载体,其能主动双重包裹CT造影剂GNP和疏水性抗癌药物阿霉素(DOX),在体外和体内酸性肿瘤条件下实现高CT成像和抗肿瘤疗效。同时,通过利用耗散粒子动力学(DPD)模拟,我们进一步获得了单分子胶束的形成过程和机制,以及GNP和DOX在单分子胶束上的详细分布和微观结构。综上所述,我们的研究结果为设计更有效的用于癌症诊疗应用的纳米载体提供了见解和指导。