INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.
Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France.
Brain. 2017 Jul 1;140(7):2012-2027. doi: 10.1093/brain/awx132.
Seminal studies using post-mortem brains of patients with Alzheimer's disease evidenced aberrant insulin-like growth factor 1 receptor (IGF1R) signalling. Addressing causality, work in animal models recently demonstrated that long-term suppression of IGF1R signalling alleviates Alzheimer's disease progression and promotes neuroprotection. However, the underlying mechanisms remain largely elusive. Here, we showed that genetically ablating IGF1R in neurons of the ageing brain efficiently protects from neuroinflammation, anxiety and memory impairments induced by intracerebroventricular injection of amyloid-β oligomers. In our mutant mice, the suppression of IGF1R signalling also invariably led to small neuronal soma size, indicative of profound changes in cellular homeodynamics. To gain insight into transcriptional signatures leading to Alzheimer's disease-relevant neuronal defence, we performed genome-wide microarray analysis on laser-dissected hippocampal CA1 after neuronal IGF1R knockout, in the presence or absence of APP/PS1 transgenes. Functional analysis comparing neurons in early-stage Alzheimer's disease with IGF1R knockout neurons revealed strongly convergent transcriptomic signatures, notably involving neurite growth, cytoskeleton organization, cellular stress response and neurotransmission. Moreover, in Alzheimer's disease neurons, a high proportion of genes responding to Alzheimer's disease showed a reversed differential expression when IGF1R was deleted. One of the genes consistently highlighted in genome-wide comparison was the neurofilament medium polypeptide Nefm. We found that NEFM accumulated in hippocampus in the presence of amyloid pathology, and decreased to control levels under IGF1R deletion, suggesting that reorganized cytoskeleton likely plays a role in neuroprotection. These findings demonstrated that significant resistance of the brain to amyloid-β can be achieved lifelong by suppressing neuronal IGF1R and identified IGF-dependent molecular pathways that coordinate an intrinsic program for neuroprotection against proteotoxicity. Our data also indicate that neuronal defences against Alzheimer's disease rely on an endogenous gene expression profile similar to the neuroprotective response activated by genetic disruption of IGF1R signalling. This study highlights neuronal IGF1R signalling as a relevant target for developing Alzheimer's disease prevention strategies.
使用阿尔茨海默病患者死后大脑的开创性研究证明了胰岛素样生长因子 1 受体 (IGF1R) 信号的异常。为了解决因果关系,最近在动物模型中的工作表明,长期抑制 IGF1R 信号可减轻阿尔茨海默病的进展并促进神经保护。然而,潜在的机制在很大程度上仍然难以捉摸。在这里,我们表明,在衰老大脑的神经元中基因敲除 IGF1R 可有效防止脑室内注射淀粉样-β寡聚体引起的神经炎症、焦虑和记忆障碍。在我们的突变小鼠中,IGF1R 信号的抑制也总是导致神经元胞体体积减小,表明细胞内动态平衡发生了深刻变化。为了深入了解导致与阿尔茨海默病相关的神经元防御的转录特征,我们在存在或不存在 APP/PS1 转基因的情况下,对激光分离的海马 CA1 进行了全基因组微阵列分析。比较神经元 IGF1R 敲除前后早期阿尔茨海默病神经元的功能分析揭示了强烈趋同的转录组特征,特别是涉及轴突生长、细胞骨架组织、细胞应激反应和神经递质传递。此外,在阿尔茨海默病神经元中,当 IGF1R 缺失时,对阿尔茨海默病有反应的基因中有很大一部分表现出相反的差异表达。在全基因组比较中始终突出的一个基因是神经丝中间多肽 Nefm。我们发现,在淀粉样蛋白病理存在的情况下,NEFM 在海马体中积累,并在 IGF1R 缺失下降低到对照水平,这表明重新组织的细胞骨架可能在神经保护中发挥作用。这些发现表明,通过抑制神经元 IGF1R,大脑可以终生获得对淀粉样蛋白-β的显著抵抗力,并确定了 IGF 依赖性分子途径,这些途径协调了针对蛋白毒性的内在神经保护程序。我们的数据还表明,神经元对阿尔茨海默病的防御依赖于类似于通过抑制 IGF1R 信号转导激活的神经保护反应的内源性基因表达谱。这项研究强调了神经元 IGF1R 信号作为开发阿尔茨海默病预防策略的相关靶点。