Suppr超能文献

人类血液单核细胞亚群:一种使用质谱流式细胞术鉴定的细胞表面标志物定义的新的门控策略。

Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry.

作者信息

Thomas Graham D, Hamers Anouk A J, Nakao Catherine, Marcovecchio Paola, Taylor Angela M, McSkimming Chantel, Nguyen Anh Tram, McNamara Coleen A, Hedrick Catherine C

机构信息

From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.).

出版信息

Arterioscler Thromb Vasc Biol. 2017 Aug;37(8):1548-1558. doi: 10.1161/ATVBAHA.117.309145. Epub 2017 Jun 8.

Abstract

OBJECTIVE

Human monocyte subsets are defined as classical (CD14CD16), intermediate (CD14CD16), and nonclassical (CD14CD16). Alterations in monocyte subset frequencies are associated with clinical outcomes, including cardiovascular disease, in which circulating intermediate monocytes independently predict cardiovascular events. However, delineating mechanisms of monocyte function is hampered by inconsistent results among studies.

APPROACH AND RESULTS

We use cytometry by time-of-flight mass cytometry to profile human monocytes using a panel of 36 cell surface markers. Using the dimensionality reduction approach visual interactive stochastic neighbor embedding (viSNE), we define monocytes by incorporating all cell surface markers simultaneously. Using viSNE, we find that although classical monocytes are defined with high purity using CD14 and CD16, intermediate and nonclassical monocytes defined using CD14 and CD16 alone are frequently contaminated, with average intermediate and nonclassical monocyte purity of ≈86.0% and 87.2%, respectively. To improve the monocyte purity, we devised a new gating scheme that takes advantage of the shared coexpression of cell surface markers on each subset. In addition to CD14 and CD16, CCR2, CD36, HLA-DR, and CD11c are the most informative markers that discriminate among the 3 monocyte populations. Using these additional markers as filters, our revised gating scheme increases the purity of both intermediate and nonclassical monocyte subsets to 98.8% and 99.1%, respectively. We demonstrate the use of this new gating scheme using conventional flow cytometry of peripheral blood mononuclear cells from subjects with cardiovascular disease.

CONCLUSIONS

Using cytometry by time-of-flight mass cytometry, we have identified a small panel of surface markers that can significantly improve monocyte subset identification and purity in flow cytometry. Such a revised gating scheme will be useful for clinical studies of monocyte function in human cardiovascular disease.

摘要

目的

人类单核细胞亚群被定义为经典型(CD14⁺CD16⁻)、中间型(CD14⁺CD16⁺)和非经典型(CD14⁻CD16⁺)。单核细胞亚群频率的改变与包括心血管疾病在内的临床结局相关,在心血管疾病中,循环中的中间型单核细胞可独立预测心血管事件。然而,研究结果的不一致阻碍了对单核细胞功能机制的描述。

方法与结果

我们使用飞行时间质谱流式细胞术,通过一组36种细胞表面标志物对人类单核细胞进行分析。使用降维方法视觉交互式随机邻域嵌入(viSNE),我们通过同时纳入所有细胞表面标志物来定义单核细胞。使用viSNE,我们发现虽然使用CD14和CD16可以高纯度地定义经典单核细胞,但仅使用CD14和CD16定义的中间型和非经典型单核细胞经常受到污染,中间型和非经典型单核细胞的平均纯度分别约为86.0%和87.2%。为了提高单核细胞的纯度,我们设计了一种新的设门方案,该方案利用了每个亚群细胞表面标志物的共同共表达。除了CD14和CD16外,CCR2、CD36、HLA-DR和CD11c是区分这3种单核细胞群体最具信息性的标志物。使用这些额外的标志物作为筛选条件,我们修订后的设门方案将中间型和非经典型单核细胞亚群的纯度分别提高到了98.8%和99.1%。我们使用来自心血管疾病患者外周血单个核细胞的传统流式细胞术展示了这种新设门方案的应用。

结论

通过飞行时间质谱流式细胞术,我们确定了一小组表面标志物,它们可以显著提高流式细胞术中单核细胞亚群的识别和纯度。这种修订后的设门方案将有助于人类心血管疾病中单核细胞功能的临床研究。

相似文献

1
Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry.
Arterioscler Thromb Vasc Biol. 2017 Aug;37(8):1548-1558. doi: 10.1161/ATVBAHA.117.309145. Epub 2017 Jun 8.
2
CD14CD16 "nonclassical" monocytes are associated with endothelial dysfunction in patients with coronary artery disease.
Thromb Haemost. 2017 May 3;117(5):971-980. doi: 10.1160/TH16-08-0614. Epub 2017 Feb 23.
4
Shift of monocyte subsets along their continuum predicts cardiovascular outcomes.
Atherosclerosis. 2017 Nov;266:95-102. doi: 10.1016/j.atherosclerosis.2017.09.032. Epub 2017 Sep 29.
6
CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography.
J Am Coll Cardiol. 2012 Oct 16;60(16):1512-20. doi: 10.1016/j.jacc.2012.07.019. Epub 2012 Sep 19.
9
Impact of CD14CD16 monocytes on coronary plaque vulnerability assessed by optical coherence tomography in coronary artery disease patients.
Atherosclerosis. 2018 Feb;269:245-251. doi: 10.1016/j.atherosclerosis.2018.01.010. Epub 2018 Jan 17.
10
Heterogeneity of human monocytes: an optimized four-color flow cytometry protocol for analysis of monocyte subsets.
J Cardiovasc Transl Res. 2011 Apr;4(2):211-9. doi: 10.1007/s12265-011-9256-4. Epub 2011 Feb 10.

引用本文的文献

1
Skeletal Muscle Damage and Inflammation.
Adv Exp Med Biol. 2025;1478:185-212. doi: 10.1007/978-3-031-88361-3_9.
2
New Insights into Monocyte-Derived Macrophages in Glioblastoma.
Research (Wash D C). 2025 Aug 12;8:0836. doi: 10.34133/research.0836. eCollection 2025.
3
Dynamic macrophage phenotypes in autoimmune and inflammatory rheumatic diseases.
Nat Rev Rheumatol. 2025 Jul 28. doi: 10.1038/s41584-025-01279-w.
4
Development of a BMU-on-a-chip model based on spatiotemporal regulation of cellular interactions in the bone remodeling cycle.
Mater Today Bio. 2025 Mar 14;32:101658. doi: 10.1016/j.mtbio.2025.101658. eCollection 2025 Jun.
8
Human monocyte subtype expression of neuroinflammation- and regeneration-related genes is linked to age and sex.
PLoS One. 2024 Oct 30;19(10):e0300946. doi: 10.1371/journal.pone.0300946. eCollection 2024.
9
Moving from lipids to leukocytes: inflammation and immune cells in atherosclerosis.
Front Cell Dev Biol. 2024 Aug 5;12:1446758. doi: 10.3389/fcell.2024.1446758. eCollection 2024.
10
Macrophage heterogeneity in myocardial infarction: Evolution and implications for diverse therapeutic approaches.
iScience. 2024 Jun 14;27(7):110274. doi: 10.1016/j.isci.2024.110274. eCollection 2024 Jul 19.

本文引用的文献

2
Computational flow cytometry: helping to make sense of high-dimensional immunology data.
Nat Rev Immunol. 2016 Jul;16(7):449-62. doi: 10.1038/nri.2016.56. Epub 2016 Jun 20.
3
The end of gating? An introduction to automated analysis of high dimensional cytometry data.
Eur J Immunol. 2016 Jan;46(1):34-43. doi: 10.1002/eji.201545774. Epub 2015 Nov 30.
5
High-dimensional analysis of the murine myeloid cell system.
Nat Immunol. 2014 Dec;15(12):1181-9. doi: 10.1038/ni.3006. Epub 2014 Oct 12.
6
Monocyte subsets in coronary artery disease and their associations with markers of inflammation and fibrinolysis.
Atherosclerosis. 2014 May;234(1):4-10. doi: 10.1016/j.atherosclerosis.2014.02.009. Epub 2014 Feb 20.
7
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
Nat Biotechnol. 2013 Jun;31(6):545-52. doi: 10.1038/nbt.2594. Epub 2013 May 19.
8
Toward a refined definition of monocyte subsets.
Front Immunol. 2013 Feb 4;4:23. doi: 10.3389/fimmu.2013.00023. eCollection 2013.
9
CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography.
J Am Coll Cardiol. 2012 Oct 16;60(16):1512-20. doi: 10.1016/j.jacc.2012.07.019. Epub 2012 Sep 19.
10
Monocyte heterogeneity in human cardiovascular disease.
Immunobiology. 2012 Dec;217(12):1273-84. doi: 10.1016/j.imbio.2012.07.001. Epub 2012 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验