Suppr超能文献

在面临宿主施加的营养限制时。

in the Face of Host-Imposed Nutrient Limitation.

机构信息

Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY 10461.

出版信息

Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0030-2016.

Abstract

Coevolution of pathogens and host has led to many metabolic strategies employed by intracellular pathogens to deal with the immune response and the scarcity of food during infection. Simply put, bacterial pathogens are just looking for food. As a consequence, the host has developed strategies to limit nutrients for the bacterium by containment of the intruder in a pathogen-containing vacuole and/or by actively depleting nutrients from the intracellular space, a process called nutritional immunity. Since metabolism is a prerequisite for virulence, such pathways could potentially be good targets for antimicrobial therapies. In this chapter, we review the current knowledge about the diet of , with a focus on amino acid and cofactors, discuss evidence for the bacilli's nutritionally independent lifestyle in the host, and evaluate strategies for new chemotherapeutic interventions.

摘要

病原体与宿主的共同进化导致了许多细胞内病原体用来应对感染期间免疫反应和食物匮乏的代谢策略。简而言之,细菌病原体只是在寻找食物。因此,宿主通过将入侵者限制在含有病原体的空泡中,和/或通过从细胞内空间主动消耗营养物质来限制细菌的营养,这一过程被称为营养免疫,从而发展出限制营养物质供应给细菌的策略。由于代谢是毒力的前提,因此这些途径可能是抗菌治疗的潜在良好靶点。在本章中,我们综述了目前关于细菌饮食的知识,重点讨论了氨基酸和辅助因子,讨论了芽孢杆菌在宿主中营养独立生活方式的证据,并评估了新的化学治疗干预策略。

相似文献

1
in the Face of Host-Imposed Nutrient Limitation.
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0030-2016.
2
Microbial quest for food in vivo: 'nutritional virulence' as an emerging paradigm.
Cell Microbiol. 2013 Jun;15(6):882-90. doi: 10.1111/cmi.12138. Epub 2013 Apr 3.
3
: Bacterial Fitness within the Host Macrophage.
Microbiol Spectr. 2019 Mar;7(2). doi: 10.1128/microbiolspec.BAI-0001-2019.
4
Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes.
Curr Top Microbiol Immunol. 2013;374:163-88. doi: 10.1007/82_2012_299.
6
The secret trumps, impelling the pathogenicity of tubercle bacilli.
Enferm Infecc Microbiol Clin. 2011 Mar;29 Suppl 1:14-9. doi: 10.1016/S0213-005X(11)70013-1.
7
Host-directed drug therapy for tuberculosis.
Nat Chem Biol. 2015 Oct;11(10):748-51. doi: 10.1038/nchembio.1917.
8
Mycobacteria, metals, and the macrophage.
Immunol Rev. 2015 Mar;264(1):249-63. doi: 10.1111/imr.12265.
9
Interactions of pathogenic mycobacteria with host macrophages.
Microbes Infect. 2007 Nov-Dec;9(14-15):1671-9. doi: 10.1016/j.micinf.2007.09.007. Epub 2007 Sep 14.

引用本文的文献

2
Glutamate decarboxylase confers acid tolerance and enhances survival of mycobacteria within macrophages.
J Biol Chem. 2025 Apr;301(4):108338. doi: 10.1016/j.jbc.2025.108338. Epub 2025 Feb 21.
4
Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery.
Pharmaceutics. 2024 May 28;16(6):725. doi: 10.3390/pharmaceutics16060725.
5
Vitamin B uptake across the mycobacterial outer membrane is influenced by membrane permeability in .
Microbiol Spectr. 2024 Jun 4;12(6):e0316823. doi: 10.1128/spectrum.03168-23. Epub 2024 May 9.
6
New insight into arginine and tryptophan metabolism in macrophage activation during tuberculosis.
Front Immunol. 2024 Apr 2;15:1363938. doi: 10.3389/fimmu.2024.1363938. eCollection 2024.
7
Metabolic Rewiring of upon Drug Treatment and Antibiotics Resistance.
Metabolites. 2024 Jan 18;14(1):63. doi: 10.3390/metabo14010063.
8
gene expression profile of during human pneumonia.
Microbiol Spectr. 2023 Sep 14;11(5):e0163923. doi: 10.1128/spectrum.01639-23.
9
Nutrient Limitation Mimics Artemisinin Tolerance in Malaria.
mBio. 2023 Jun 27;14(3):e0070523. doi: 10.1128/mbio.00705-23. Epub 2023 Apr 25.
10
The evolving biology of drug resistance.
Front Cell Infect Microbiol. 2022 Oct 5;12:1027394. doi: 10.3389/fcimb.2022.1027394. eCollection 2022.

本文引用的文献

2
Inflammatory signaling in human tuberculosis granulomas is spatially organized.
Nat Med. 2016 May;22(5):531-8. doi: 10.1038/nm.4073. Epub 2016 Apr 4.
3
Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.
J Biol Chem. 2016 Mar 25;291(13):7060-9. doi: 10.1074/jbc.M115.707430. Epub 2016 Feb 8.
4
Glutamate Dehydrogenase Is Required by Mycobacterium bovis BCG for Resistance to Cellular Stress.
PLoS One. 2016 Jan 29;11(1):e0147706. doi: 10.1371/journal.pone.0147706. eCollection 2016.
5
Amino acid auxotrophy as a system of immunological control nodes.
Nat Immunol. 2016 Feb;17(2):132-9. doi: 10.1038/ni.3323.
6
A Focused Screen Identifies Antifolates with Activity on Mycobacterium tuberculosis.
ACS Infect Dis. 2015 Dec 11;1(12):604-14. doi: 10.1021/acsinfecdis.5b00063. Epub 2015 Aug 12.
7
Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E348-57. doi: 10.1073/pnas.1523321113. Epub 2016 Jan 4.
8
Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration.
Semin Immunopathol. 2016 Mar;38(2):139-52. doi: 10.1007/s00281-015-0534-0. Epub 2015 Oct 21.
9
The association between sterilizing activity and drug distribution into tuberculosis lesions.
Nat Med. 2015 Oct;21(10):1223-7. doi: 10.1038/nm.3937. Epub 2015 Sep 7.
10
Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):10008-13. doi: 10.1073/pnas.1513033112. Epub 2015 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验