Suppr超能文献

在不完全性颈脊髓损伤后,在整个呼吸周期进行高频硬膜外刺激可诱发膈神经短期增强效应。

High-frequency epidural stimulation across the respiratory cycle evokes phrenic short-term potentiation after incomplete cervical spinal cord injury.

作者信息

Gonzalez-Rothi Elisa J, Streeter Kristi A, Hanna Marie H, Stamas Anna C, Reier Paul J, Baekey David M, Fuller David D

机构信息

McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida;

McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida.

出版信息

J Neurophysiol. 2017 Oct 1;118(4):2344-2357. doi: 10.1152/jn.00913.2016. Epub 2017 Jun 14.

Abstract

C2 spinal hemilesion (C2Hx) paralyzes the ipsilateral diaphragm, but recovery is possible through activation of "crossed spinal" synaptic inputs to ipsilateral phrenic motoneurons. We tested the hypothesis that high-frequency epidural stimulation (HF-ES) would potentiate ipsilateral phrenic output after subacute and chronic C2Hx. HF-ES (300 Hz) was applied to the ventrolateral C4 or T2 spinal cord ipsilateral to C2Hx in anesthetized and mechanically ventilated adult rats. Stimulus duration was 60 s, and currents ranged from 100 to 1,000 µA. Bilateral phrenic nerve activity and ipsilateral hypoglossal (XII) nerve activity were recorded before and after HF-ES. Higher T2 stimulus currents potentiated ipsilateral phasic inspiratory activity at both 2 and 12 wk post-C2Hx, whereas higher stimulus currents delivered at C4 potentiated ipsilateral phasic phrenic activity only at 12 wk ( = 0.028). Meanwhile, tonic output in the ipsilateral phrenic nerve reached 500% of baseline values at the high currents with no difference between 2 and 12 wk. HF-ES did not trigger inspiratory burst-frequency changes. Similar responses occurred following T2 HF-ES. Increases in contralateral phrenic and XII nerve output were induced by C4 and T2 HF-ES at higher currents, but the relative magnitude of these changes was small compared with the ipsilateral phrenic response. We conclude that following incomplete cervical spinal cord injury, HF-ES of the ventrolateral midcervical or thoracic spinal cord can potentiate efferent phrenic motor output with little impact on inspiratory burst frequency. However, the substantial increases in tonic output indicate that the uninterrupted 60-s stimulation paradigm used is unlikely to be useful for respiratory muscle activation after spinal injury. Previous studies reported that high-frequency epidural stimulation (HF-ES) activates the diaphragm following acute spinal transection. This study examined HF-ES and phrenic motor output following subacute and chronic incomplete cervical spinal cord injury. Short-term potentiation of phrenic bursting following HF-ES illustrates the potential for spinal stimulation to induce respiratory neuroplasticity. Increased tonic phrenic output indicates that alternatives to the continuous stimulation paradigm used in this study will be required for respiratory muscle activation after spinal cord injury.

摘要

C2脊髓半横断损伤(C2Hx)会导致同侧膈肌麻痹,但通过激活对同侧膈运动神经元的“交叉脊髓”突触输入,恢复是有可能的。我们检验了这样一个假设:高频硬膜外刺激(HF-ES)会在亚急性和慢性C2Hx后增强同侧膈神经输出。在麻醉并机械通气的成年大鼠中,将HF-ES(300赫兹)施加于C2Hx同侧的C4或T2脊髓腹外侧。刺激持续时间为60秒,电流范围为100至1000微安。在HF-ES前后记录双侧膈神经活动和同侧舌下(XII)神经活动。较高的T2刺激电流在C2Hx后2周和12周时均增强了同侧的阶段性吸气活动,而在C4施加的较高刺激电流仅在12周时增强了同侧的阶段性膈神经活动(P = 0.028)。同时,在高电流下,同侧膈神经的紧张性输出达到基线值的500%,2周和12周之间无差异。HF-ES未引发吸气爆发频率变化。T2 HF-ES后出现类似反应。在较高电流下,C4和T2 HF-ES诱导了对侧膈神经和XII神经输出增加,但与同侧膈神经反应相比,这些变化的相对幅度较小。我们得出结论,在不完全颈脊髓损伤后,颈中或胸段脊髓腹外侧的HF-ES可增强膈运动传出输出,对吸气爆发频率影响很小。然而,紧张性输出的大幅增加表明,所使用的60秒不间断刺激模式不太可能对脊髓损伤后的呼吸肌激活有用。先前的研究报告称,高频硬膜外刺激(HF-ES)在急性脊髓横断后可激活膈肌。本研究检查了亚急性和慢性不完全颈脊髓损伤后的HF-ES和膈运动输出。HF-ES后膈神经爆发的短期增强说明了脊髓刺激诱导呼吸神经可塑性的潜力。紧张性膈神经输出增加表明,脊髓损伤后呼吸肌激活需要本研究中使用的连续刺激模式的替代方法。

相似文献

2
Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.
J Physiol. 2016 Oct 15;594(20):6009-6024. doi: 10.1113/JP272287. Epub 2016 Jun 3.
3
Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
J Neurophysiol. 2017 Feb 1;117(2):767-776. doi: 10.1152/jn.00721.2016. Epub 2016 Nov 23.
4
Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury.
Exp Neurol. 2013 Nov;249:20-32. doi: 10.1016/j.expneurol.2013.08.003. Epub 2013 Aug 13.
5
Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury.
Exp Neurol. 2015 Jan;263:314-24. doi: 10.1016/j.expneurol.2014.10.002. Epub 2014 Oct 16.
6
Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat.
J Appl Physiol (1985). 2014 Feb 15;116(4):395-405. doi: 10.1152/japplphysiol.01001.2013. Epub 2013 Nov 27.
7
Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats.
J Appl Physiol (1985). 2006 Mar;100(3):800-6. doi: 10.1152/japplphysiol.00960.2005. Epub 2005 Nov 3.
8
Long-term facilitation of ipsilateral but not contralateral phrenic output after cervical spinal cord hemisection.
Exp Neurol. 2006 Jul;200(1):74-81. doi: 10.1016/j.expneurol.2006.01.035. Epub 2006 May 2.
9
Phrenic-to-intercostal reflex activity in response to high frequency spinal cord stimulation (HF-SCS).
Respir Physiol Neurobiol. 2022 Dec;306:103962. doi: 10.1016/j.resp.2022.103962. Epub 2022 Sep 5.
10
Ampakines stimulate phrenic motor output after cervical spinal cord injury.
Exp Neurol. 2020 Dec;334:113465. doi: 10.1016/j.expneurol.2020.113465. Epub 2020 Sep 17.

引用本文的文献

1
An update on spinal cord injury and diaphragm neuromotor control.
Expert Rev Respir Med. 2025 Jul;19(7):679-695. doi: 10.1080/17476348.2025.2495165. Epub 2025 Apr 22.
2
Sex differences in spontaneous respiratory recovery following chronic C2 hemisection.
J Appl Physiol (1985). 2024 Jul 1;137(1):166-180. doi: 10.1152/japplphysiol.00040.2024. Epub 2024 Jun 13.
3
Epidural Spinal Cord Stimulation for Spinal Cord Injury in Humans: A Systematic Review.
J Clin Med. 2024 Feb 14;13(4):1090. doi: 10.3390/jcm13041090.
4
Closed-loop cervical epidural stimulation partially restores ipsilesional diaphragm EMG after acute C hemisection.
Respir Physiol Neurobiol. 2024 Feb;320:104182. doi: 10.1016/j.resp.2023.104182. Epub 2023 Nov 1.
6
Combining spinal neuromodulation and activity based neurorehabilitation therapy improves sensorimotor function in cerebral palsy.
Front Rehabil Sci. 2023 Jul 26;4:1216281. doi: 10.3389/fresc.2023.1216281. eCollection 2023.
8
Regulation of Human Respiration by Electrical Stimulation.
J Evol Biochem Physiol. 2022;58(6):1879-1891. doi: 10.1134/S0022093022060175. Epub 2022 Dec 22.
9
Respiratory plasticity following spinal cord injury: perspectives from mouse to man.
Neural Regen Res. 2022 Oct;17(10):2141-2148. doi: 10.4103/1673-5374.335839.

本文引用的文献

1
Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
J Neurophysiol. 2017 Feb 1;117(2):767-776. doi: 10.1152/jn.00721.2016. Epub 2016 Nov 23.
2
Modulation of respiratory output by cervical epidural stimulation in the anesthetized mouse.
J Appl Physiol (1985). 2016 Dec 1;121(6):1272-1281. doi: 10.1152/japplphysiol.00473.2016. Epub 2016 Oct 7.
3
Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.
Exp Neurol. 2017 Jan;287(Pt 2):276-287. doi: 10.1016/j.expneurol.2016.08.018. Epub 2016 Aug 28.
4
Effects of Stand and Step Training with Epidural Stimulation on Motor Function for Standing in Chronic Complete Paraplegics.
J Neurotrauma. 2017 May 1;34(9):1787-1802. doi: 10.1089/neu.2016.4516. Epub 2016 Oct 5.
5
High frequency spinal cord stimulation-New method to restore cough.
Respir Physiol Neurobiol. 2016 Oct;232:54-6. doi: 10.1016/j.resp.2016.07.001. Epub 2016 Jul 6.
6
Respiratory neuroplasticity - Overview, significance and future directions.
Exp Neurol. 2017 Jan;287(Pt 2):144-152. doi: 10.1016/j.expneurol.2016.05.022. Epub 2016 May 18.
7
Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients.
Neurorehabil Neural Repair. 2016 Nov;30(10):951-962. doi: 10.1177/1545968316644344. Epub 2016 May 18.
8
Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury.
J Neurotrauma. 2016 Sep 15;33(18):1709-23. doi: 10.1089/neu.2015.4256. Epub 2016 Apr 20.
9
Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord.
Neurosci Lett. 2015 Nov 16;609:229-34. doi: 10.1016/j.neulet.2015.10.005. Epub 2015 Nov 4.
10
Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury.
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12193-8. doi: 10.1073/pnas.1505383112. Epub 2015 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验