Suppr超能文献

代谢物测量:需避免的陷阱与应遵循的做法

Metabolite Measurement: Pitfalls to Avoid and Practices to Follow.

作者信息

Lu Wenyun, Su Xiaoyang, Klein Matthias S, Lewis Ian A, Fiehn Oliver, Rabinowitz Joshua D

机构信息

Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey 08544; email:

Department of Biological Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada.

出版信息

Annu Rev Biochem. 2017 Jun 20;86:277-304. doi: 10.1146/annurev-biochem-061516-044952.

Abstract

Metabolites are the small biological molecules involved in energy conversion and biosynthesis. Studying metabolism is inherently challenging due to metabolites' reactivity, structural diversity, and broad concentration range. Herein, we review the common pitfalls encountered in metabolomics and provide concrete guidelines for obtaining accurate metabolite measurements, focusing on water-soluble primary metabolites. We show how seemingly straightforward sample preparation methods can introduce systematic errors (e.g., owing to interconversion among metabolites) and how proper selection of quenching solvent (e.g., acidic acetonitrile:methanol:water) can mitigate such problems. We discuss the specific strengths, pitfalls, and best practices for each common analytical platform: liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and enzyme assays. Together this information provides a pragmatic knowledge base for carrying out biologically informative metabolite measurements.

摘要

代谢物是参与能量转换和生物合成的小生物分子。由于代谢物的反应性、结构多样性和广泛的浓度范围,研究代谢本身具有挑战性。在此,我们回顾了代谢组学中常见的陷阱,并提供了获得准确代谢物测量值的具体指南,重点关注水溶性初级代谢物。我们展示了看似简单的样品制备方法如何引入系统误差(例如,由于代谢物之间的相互转化),以及如何正确选择淬灭溶剂(例如,酸性乙腈:甲醇:水)可以减轻此类问题。我们讨论了每个常见分析平台的具体优势、陷阱和最佳实践:液相色谱-质谱联用(LC-MS)、气相色谱-质谱联用(GC-MS)、核磁共振(NMR)和酶分析。这些信息共同为进行具有生物学意义的代谢物测量提供了一个实用的知识库。

相似文献

1
Metabolite Measurement: Pitfalls to Avoid and Practices to Follow.
Annu Rev Biochem. 2017 Jun 20;86:277-304. doi: 10.1146/annurev-biochem-061516-044952.
5
Assessment of compatibility between extraction methods for NMR- and LC/MS-based metabolomics.
Anal Chem. 2012 Jul 17;84(14):5838-44. doi: 10.1021/ac3005567. Epub 2012 Jun 26.
6
Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS.
Anal Bioanal Chem. 2015 Nov;407(29):8861-72. doi: 10.1007/s00216-015-9047-x. Epub 2015 Oct 7.
7
A perspective on the standards describing mass spectrometry-based metabolic phenotyping (metabolomics/metabonomics) studies in publications.
J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Feb 1;1164:122515. doi: 10.1016/j.jchromb.2020.122515. Epub 2020 Dec 24.
8
NMR and MS methods for metabonomics.
Methods Mol Biol. 2011;691:385-415. doi: 10.1007/978-1-60761-849-2_24.
10
Stable isotope coded derivatizing reagents as internal standards in metabolite profiling.
J Chromatogr A. 2013 Jun 28;1296:196-203. doi: 10.1016/j.chroma.2013.03.072. Epub 2013 Apr 9.

引用本文的文献

1
Glioblastoma metabolomics: uncovering biomarkers for diagnosis, prognosis and targeted therapy.
J Exp Clin Cancer Res. 2025 Aug 7;44(1):230. doi: 10.1186/s13046-025-03497-2.
3
Unravelling lipid heterogeneity: Advances in single-cell lipidomics in cellular metabolism and disease.
BBA Adv. 2025 Jun 27;8:100169. doi: 10.1016/j.bbadva.2025.100169. eCollection 2025.
6
Mass Spectrometry-based Single-Cell Lipidomics: Advancements, Challenges, and the Path Forward.
Trends Analyt Chem. 2023 Dec;169. doi: 10.1016/j.trac.2023.117350. Epub 2023 Oct 5.
7
Combined inhibition of de novo glutathione and nucleotide biosynthesis is synthetically lethal in glioblastoma.
Cell Rep. 2025 May 27;44(5):115596. doi: 10.1016/j.celrep.2025.115596. Epub 2025 Apr 19.
9
Influence of Wild and Cultivated Environments on the Antioxidant and Medicinal Components of A. Boriss.
Plants (Basel). 2024 Dec 19;13(24):3544. doi: 10.3390/plants13243544.

本文引用的文献

1
Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism.
Cell. 2016 Aug 25;166(5):1324-1337.e11. doi: 10.1016/j.cell.2016.07.040.
2
Challenges and perspectives in quantitative NMR.
Magn Reson Chem. 2017 Jan;55(1):61-69. doi: 10.1002/mrc.4475. Epub 2016 Jul 21.
3
In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.
Nat Protoc. 2016 Aug;11(8):1345-59. doi: 10.1038/nprot.2016.074. Epub 2016 Jun 30.
4
Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.
Nat Chem Biol. 2016 Jul;12(7):482-9. doi: 10.1038/nchembio.2077. Epub 2016 May 2.
5
Sensitive, highly resolved, and quantitative (1)H-(13)C NMR data in one go for tracking metabolites in vegetal extracts.
Chem Commun (Camb). 2016 May 4;52(36):6142-5. doi: 10.1039/c6cc01783e. Epub 2016 Apr 13.
6
Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.
Angew Chem Int Ed Engl. 2016 May 10;55(20):6000-3. doi: 10.1002/anie.201600334. Epub 2016 Apr 6.
7
Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling.
Curr Protoc Mol Biol. 2016 Apr 1;114:30.4.1-30.4.32. doi: 10.1002/0471142727.mb3004s114.
8
Cancer Metabolomics and the Human Metabolome Database.
Metabolites. 2016 Mar 2;6(1):10. doi: 10.3390/metabo6010010.
9
Improving the Performance of High-Precision qNMR Measurements by a Double Integration Procedure in Practical Cases.
Anal Chem. 2016 Apr 5;88(7):3836-43. doi: 10.1021/acs.analchem.5b04911. Epub 2016 Mar 14.
10
A roadmap for the XCMS family of software solutions in metabolomics.
Curr Opin Chem Biol. 2016 Feb;30:87-93. doi: 10.1016/j.cbpa.2015.11.009. Epub 2015 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验