Suppr超能文献

古菌和细菌防御系统的进化基因组学。

Evolutionary Genomics of Defense Systems in Archaea and Bacteria.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894; email:

出版信息

Annu Rev Microbiol. 2017 Sep 8;71:233-261. doi: 10.1146/annurev-micro-090816-093830. Epub 2017 Jun 28.

Abstract

Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death.

摘要

细菌和古菌的进化涉及与大量遗传寄生虫的持续军备竞赛。因此,大多数细菌和古菌的基因中都有相当大的一部分专门用于抗寄生虫防御。这些防御系统的功能遵循几种不同的策略,包括先天免疫、适应性免疫和休眠诱导或程序性细胞死亡。最近的比较基因组学研究利用微生物基因组和宏基因组不断扩大的数据库,并结合直接实验,发现了几种以前未知的防御系统,包括以 Argonaute 蛋白为中心的先天免疫、噬菌体排除和适应性免疫的新型 CRISPR-Cas 系统。防御系统的功能和进化的一些一般原则开始显现,特别是在原核生物的进化过程中防御基因的大量获得和丧失;基因组防御岛的形成;移动遗传元件与防御之间的进化联系,其中移动元件的基因被反复招募用于防御功能;防御系统的部分自私和成瘾行为;以及免疫和休眠诱导/程序性细胞死亡之间的耦合。

相似文献

1
Evolutionary Genomics of Defense Systems in Archaea and Bacteria.
Annu Rev Microbiol. 2017 Sep 8;71:233-261. doi: 10.1146/annurev-micro-090816-093830. Epub 2017 Jun 28.
3
Comparative genomics of defense systems in archaea and bacteria.
Nucleic Acids Res. 2013 Apr;41(8):4360-77. doi: 10.1093/nar/gkt157. Epub 2013 Mar 6.
4
Viral diversity threshold for adaptive immunity in prokaryotes.
mBio. 2012 Dec 4;3(6):e00456-12. doi: 10.1128/mBio.00456-12.
5
Phylogenomics of Cas4 family nucleases.
BMC Evol Biol. 2017 Nov 28;17(1):232. doi: 10.1186/s12862-017-1081-1.
6
CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.
RNA Biol. 2013 May;10(5):679-86. doi: 10.4161/rna.24022. Epub 2013 Feb 25.
7
Coupling immunity and programmed cell suicide in prokaryotes: Life-or-death choices.
Bioessays. 2017 Jan;39(1):1-9. doi: 10.1002/bies.201600186. Epub 2016 Nov 29.
8
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Genome Biol Evol. 2017 Oct 1;9(10):2812-2825. doi: 10.1093/gbe/evx192.
9
CRISPR-Cas systems: beyond adaptive immunity.
Nat Rev Microbiol. 2014 May;12(5):317-26. doi: 10.1038/nrmicro3241. Epub 2014 Apr 7.
10
[CRISPR adaptive immunity systems of procaryotes].
Mol Biol (Mosk). 2012 Mar-Apr;46(2):195-203.

引用本文的文献

1
Phage defence-system abundances vary across environments and increase with viral density.
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240069. doi: 10.1098/rstb.2024.0069.
4
Exploring Virulence Characteristics of Clinical Isolates from Greece.
Microorganisms. 2025 Jun 26;13(7):1488. doi: 10.3390/microorganisms13071488.
5
SMC-like Wadjet system prevents plasmid transfer into Clostridium cellulovorans.
Appl Microbiol Biotechnol. 2025 Jul 23;109(1):170. doi: 10.1007/s00253-025-13551-w.
6
Random guide-independent DNA cleavage from the Argonaute of Exiguobacterium sp. AB2.
BMC Microbiol. 2025 Jul 19;25(1):444. doi: 10.1186/s12866-025-04159-1.
8
Establishment and improvement of genetic manipulation tools for .
Eng Microbiol. 2025 Feb 8;5(1):100192. doi: 10.1016/j.engmic.2025.100192. eCollection 2025 Mar.
10
Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems.
Microorganisms. 2025 May 14;13(5):1126. doi: 10.3390/microorganisms13051126.

本文引用的文献

1
Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery.
Curr Opin Microbiol. 2017 Aug;38:36-43. doi: 10.1016/j.mib.2017.04.004. Epub 2017 May 1.
2
Reconstruction of the evolution of microbial defense systems.
BMC Evol Biol. 2017 Apr 4;17(1):94. doi: 10.1186/s12862-017-0942-y.
4
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
5
Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities.
Cell. 2017 Jan 12;168(1-2):121-134.e12. doi: 10.1016/j.cell.2016.12.031.
6
Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.
Mol Cell. 2017 Feb 16;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub 2017 Jan 5.
7
PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease.
Cell. 2016 Dec 15;167(7):1814-1828.e12. doi: 10.1016/j.cell.2016.11.053.
8
Coupling immunity and programmed cell suicide in prokaryotes: Life-or-death choices.
Bioessays. 2017 Jan;39(1):1-9. doi: 10.1002/bies.201600186. Epub 2016 Nov 29.
9
Mechanistic Insights into Archaeal and Human Argonaute Substrate Binding and Cleavage Properties.
PLoS One. 2016 Oct 14;11(10):e0164695. doi: 10.1371/journal.pone.0164695. eCollection 2016.
10
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
Nature. 2016 Oct 13;538(7624):270-273. doi: 10.1038/nature19802. Epub 2016 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验