Suppr超能文献

使用智能手机进行步态参数和事件估计。

Gait parameter and event estimation using smartphones.

作者信息

Pepa Lucia, Verdini Federica, Spalazzi Luca

机构信息

Department of Information Engineering, Politecnica delle Marche University Ancona, AN, Italy.

出版信息

Gait Posture. 2017 Sep;57:217-223. doi: 10.1016/j.gaitpost.2017.06.011. Epub 2017 Jun 20.

Abstract

BACKGROUND AND OBJECTIVES

The use of smartphones can greatly help for gait parameters estimation during daily living, but its accuracy needs a deeper evaluation against a gold standard. The objective of the paper is a step-by-step assessment of smartphone performance in heel strike, step count, step period, and step length estimation. The influence of smartphone placement and orientation on estimation performance is evaluated as well.

METHODS

This work relies on a smartphone app developed to acquire, process, and store inertial sensor data and rotation matrices about device position. Smartphone alignment was evaluated by expressing the acceleration vector in three reference frames. Two smartphone placements were tested. Three methods for heel strike detection were considered. On the basis of estimated heel strikes, step count is performed, step period is obtained, and the inverted pendulum model is applied for step length estimation. Pearson correlation coefficient, absolute and relative errors, ANOVA, and Bland-Altman limits of agreement were used to compare smartphone estimation with stereophotogrammetry on eleven healthy subjects.

RESULTS

High correlations were found between smartphone and stereophotogrammetric measures: up to 0.93 for step count, to 0.99 for heel strike, 0.96 for step period, and 0.92 for step length. Error ranges are comparable to those in the literature. Smartphone placement did not affect the performance. The major influence of acceleration reference frames and heel strike detection method was found in step count.

CONCLUSION

This study provides detailed information about expected accuracy when smartphone is used as a gait monitoring tool. The obtained results encourage real life applications.

摘要

背景与目的

智能手机的使用对日常生活中的步态参数估计有很大帮助,但其准确性需要对照金标准进行更深入的评估。本文的目的是逐步评估智能手机在足跟触地、步数计数、步幅周期和步长估计方面的性能。同时还评估了智能手机放置位置和方向对估计性能的影响。

方法

本研究依赖于一个开发的智能手机应用程序,用于采集、处理和存储惯性传感器数据以及关于设备位置的旋转矩阵。通过在三个参考系中表示加速度矢量来评估智能手机的对齐情况。测试了两种智能手机放置位置。考虑了三种足跟触地检测方法。基于估计的足跟触地情况进行步数计数,获得步幅周期,并应用倒立摆模型进行步长估计。使用皮尔逊相关系数、绝对误差和相对误差、方差分析以及布兰德-奥特曼一致性界限,将智能手机的估计结果与11名健康受试者的立体摄影测量结果进行比较。

结果

发现智能手机与立体摄影测量结果之间具有高度相关性:步数计数高达0.93,足跟触地为0.99,步幅周期为0.96,步长为0.92。误差范围与文献中的相当。智能手机放置位置不影响性能。在步数计数方面发现加速度参考系和足跟触地检测方法有主要影响。

结论

本研究提供了关于将智能手机用作步态监测工具时预期准确性的详细信息。所得结果鼓励在现实生活中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验