Gradia Scott D, Ishida Justin P, Tsai Miaw-Sheue, Jeans Chris, Tainer John A, Fuss Jill O
QB3 MacroLab, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, United States.
Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
Methods Enzymol. 2017;592:1-26. doi: 10.1016/bs.mie.2017.03.008. Epub 2017 May 15.
Recombinant expression of large, multiprotein complexes is essential and often rate limiting for determining structural, biophysical, and biochemical properties of DNA repair, replication, transcription, and other key cellular processes. Baculovirus-infected insect cell expression systems are especially well suited for producing large, human proteins recombinantly, and multigene baculovirus systems have facilitated studies of multiprotein complexes. In this chapter, we describe a multigene baculovirus system called MacroBac that uses a Biobricks-type assembly method based on restriction and ligation (Series 11) or ligation-independent cloning (Series 438). MacroBac cloning and assembly is efficient and equally well suited for either single subcloning reactions or high-throughput cloning using 96-well plates and liquid handling robotics. MacroBac vectors are polypromoter with each gene flanked by a strong polyhedrin promoter and an SV40 poly(A) termination signal that minimize gene order expression level effects seen in many polycistronic assemblies. Large assemblies are robustly achievable, and we have successfully assembled as many as 10 genes into a single MacroBac vector. Importantly, we have observed significant increases in expression levels and quality of large, multiprotein complexes using a single, multigene, polypromoter virus rather than coinfection with multiple, single-gene viruses. Given the importance of characterizing functional complexes, we believe that MacroBac provides a critical enabling technology that may change the way that structural, biophysical, and biochemical research is done.
大型多蛋白复合物的重组表达对于确定DNA修复、复制、转录及其他关键细胞过程的结构、生物物理和生化特性至关重要,且常常是限速步骤。杆状病毒感染的昆虫细胞表达系统特别适合重组表达大型人类蛋白,多基因杆状病毒系统推动了对多蛋白复合物的研究。在本章中,我们描述了一种名为MacroBac的多基因杆状病毒系统,该系统采用基于限制性内切酶和连接反应(第11系列)或不依赖连接的克隆技术(第438系列)的生物砖型组装方法。MacroBac克隆和组装效率高,同样适用于单亚克隆反应或使用96孔板和液体处理机器人的高通量克隆。MacroBac载体是多启动子的,每个基因两侧都有一个强多角体蛋白启动子和一个SV40聚腺苷酸化终止信号,可将许多多顺反子组装中出现的基因顺序表达水平效应降至最低。大型组装能够稳健实现,我们已成功将多达10个基因组装到单个MacroBac载体中。重要的是,我们观察到使用单一的多基因、多启动子病毒而非多种单基因病毒共感染时,大型多蛋白复合物的表达水平和质量有显著提高。鉴于表征功能复合物的重要性,我们认为MacroBac提供了一项关键的使能技术,可能会改变结构、生物物理和生化研究的开展方式。