The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands.
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8113-8118. doi: 10.1073/pnas.1702041114. Epub 2017 Jul 11.
Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins to respond to invading pathogens and activate immune responses. An emerging concept of NLR function is that "sensor" NLR proteins are paired with "helper" NLRs to mediate immune signaling. However, our fundamental knowledge of sensor/helper NLRs in plants remains limited. In this study, we discovered a complex NLR immune network in which helper NLRs in the NRC (NLR required for cell death) family are functionally redundant but display distinct specificities toward different sensor NLRs that confer immunity to oomycetes, bacteria, viruses, nematodes, and insects. The helper NLR NRC4 is required for the function of several sensor NLRs, including Rpi-blb2, Mi-1.2, and R1, whereas NRC2 and NRC3 are required for the function of the sensor NLR Prf. Interestingly, NRC2, NRC3, and NRC4 redundantly contribute to the immunity mediated by other sensor NLRs, including Rx, Bs2, R8, and Sw5. NRC family and NRC-dependent NLRs are phylogenetically related and cluster into a well-supported superclade. Using extensive phylogenetic analysis, we discovered that the NRC superclade probably emerged over 100 Mya from an NLR pair that diversified to constitute up to one-half of the NLRs of asterids. These findings reveal a complex genetic network of NLRs and point to a link between evolutionary history and the mechanism of immune signaling. We propose that this NLR network increases the robustness of immune signaling to counteract rapidly evolving plant pathogens.
植物和动物都依赖核苷酸结合域和富含亮氨酸重复序列(NLR)蛋白来应对入侵的病原体并激活免疫反应。NLR 功能的一个新出现的概念是,“传感器”NLR 蛋白与“辅助”NLR 配对以介导免疫信号。然而,我们对植物中传感器/辅助 NLR 的基本认识仍然有限。在这项研究中,我们发现了一个复杂的 NLR 免疫网络,其中 NRC(细胞死亡所需的 NLR)家族中的辅助 NLR 在功能上是冗余的,但对赋予卵菌、细菌、病毒、线虫和昆虫免疫的不同传感器 NLR 表现出不同的特异性。辅助 NLR NRC4 是几个传感器 NLR,包括 Rpi-blb2、Mi-1.2 和 R1 的功能所必需的,而 NRC2 和 NRC3 是传感器 NLR Prf 功能所必需的。有趣的是,NRC2、NRC3 和 NRC4 对其他传感器 NLR,包括 Rx、Bs2、R8 和 Sw5 介导的免疫有冗余贡献。NRC 家族和 NRC 依赖的 NLR 在系统发育上是相关的,并聚类成一个支持良好的超支。通过广泛的系统发育分析,我们发现 NRC 超支可能是在 1 亿多年前从一对 NLR 多样化而来的,这对 NLR 多样化构成了半本植物 NLR 的一半以上。这些发现揭示了 NLR 之间的复杂遗传网络,并指出了进化历史和免疫信号机制之间的联系。我们提出,这个 NLR 网络增加了免疫信号的稳健性,以对抗快速进化的植物病原体。