Suppr超能文献

PREDICT-CP:全面监测以预测学龄脑瘫儿童预后的研究方案

PREDICT-CP: study protocol of implementation of comprehensive surveillance to predict outcomes for school-aged children with cerebral palsy.

作者信息

Boyd Roslyn N, Davies Peter Sw, Ziviani Jenny, Trost Stewart, Barber Lee, Ware Robert, Rose Stephen, Whittingham Koa, Sakzewski Leanne, Bell Kristie, Carty Christopher, Obst Steven, Benfer Katherine, Reedman Sarah, Edwards Priya, Kentish Megan, Copeland Lisa, Weir Kelly, Davenport Camilla, Brooks Denise, Coulthard Alan, Pelekanos Rebecca, Guzzetta Andrea, Fiori Simona, Wynter Meredith, Finn Christine, Burgess Andrea, Morris Kym, Walsh John, Lloyd Owen, Whitty Jennifer A, Scuffham Paul A

机构信息

Queensland Cerebral Palsy and Rehabilitation Research Centre (QCPRRC), The University of Queensland, Brisbane, Queensland, Australia.

Queensland Paediatric Rehabilitation Service, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia.

出版信息

BMJ Open. 2017 Jul 12;7(7):e014950. doi: 10.1136/bmjopen-2016-014950.

Abstract

OBJECTIVES

Cerebral palsy (CP) remains the world's most common childhood physical disability with total annual costs of care and lost well-being of $A3.87b. The PREDICT-CP (NHMRC 1077257 Partnership Project: Comprehensive surveillance to PREDICT outcomes for school age children with CP) study will investigate the influence of brain structure, body composition, dietary intake, oropharyngeal function, habitual physical activity, musculoskeletal development (hip status, bone health) and muscle performance on motor attainment, cognition, executive function, communication, participation, quality of life and related health resource use costs. The PREDICT-CP cohort provides further follow-up at 8-12 years of two overlapping preschool-age cohorts examined from 1.5 to 5 years (NHMRC 465128 motor and brain development; NHMRC 569605 growth, nutrition and physical activity).

METHODS AND ANALYSES

This population-based cohort study undertakes state-wide surveillance of 245 children with CP born in Queensland (birth years 2006-2009). Children will be classified for Gross Motor Function Classification System; Manual Ability Classification System, Communication Function Classification System and Eating and Drinking Ability Classification System. Outcomes include gross motor function, musculoskeletal development (hip displacement, spasticity, muscle contracture), upper limb function, communication difficulties, oropharyngeal dysphagia, dietary intake and body composition, participation, parent-reported and child-reported quality of life and medical and allied health resource use. These detailed phenotypical data will be compared with brain macrostructure and microstructure using 3 Tesla MRI (3T MRI). Relationships between brain lesion severity and outcomes will be analysed using multilevel mixed-effects models.

ETHICS AND DISSEMINATION

The PREDICT-CP protocol is a prospectively registered and ethically accepted study protocol. The study combines data at 1.5-5 then 8-12 years of direct clinical assessment to enable prediction of outcomes and healthcare needs essential for tailoring interventions (eg, rehabilitation, orthopaedic surgery and nutritional supplements) and the projected healthcare utilisation.

TRIAL REGISTRATION NUMBER

ACTRN: 12616001488493.

摘要

目标

脑瘫(CP)仍是全球最常见的儿童身体残疾,每年护理和幸福损失的总成本达38.7亿澳元。预测脑瘫研究(澳大利亚国家卫生与医学研究委员会1077257合作项目:对学龄期脑瘫儿童的结局进行综合监测以进行预测)将调查脑结构、身体成分、饮食摄入、口咽功能、习惯性身体活动、肌肉骨骼发育(髋关节状态、骨骼健康)和肌肉性能对运动能力、认知、执行功能、沟通、参与、生活质量及相关医疗资源使用成本的影响。预测脑瘫队列对两个重叠的学龄前队列(1.5至5岁时进行检查,澳大利亚国家卫生与医学研究委员会465128运动与脑发育;澳大利亚国家卫生与医学研究委员会569605生长、营养与身体活动)在8至12岁时进行进一步随访。

方法与分析

这项基于人群的队列研究对昆士兰州出生的245名脑瘫儿童(出生年份2006 - 2009年)进行全州范围的监测。儿童将根据粗大运动功能分类系统、手动能力分类系统、沟通功能分类系统以及饮食能力分类系统进行分类。结局包括粗大运动功能、肌肉骨骼发育(髋关节移位、痉挛、肌肉挛缩)、上肢功能、沟通困难、口咽吞咽困难、饮食摄入和身体成分、参与度、家长报告和儿童报告的生活质量以及医疗和相关健康资源的使用情况。这些详细的表型数据将与使用3特斯拉磁共振成像(3T MRI)的脑宏观结构和微观结构进行比较。将使用多级混合效应模型分析脑损伤严重程度与结局之间的关系。

伦理与传播

预测脑瘫方案是一项前瞻性注册且符合伦理的研究方案。该研究结合了1.5至5岁以及8至12岁时直接临床评估的数据,以便能够预测结局和医疗保健需求,这对于制定干预措施(如康复、矫形手术和营养补充剂)以及预计的医疗保健利用至关重要。

试验注册号

ACTRN:12616001488493。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de16/5734266/1164116b702e/bmjopen-2016-014950f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验