Suppr超能文献

杂多序列中大小和形状波动的解耦调和了 SAXS 与 FRET 测量之间的差异。

Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements.

机构信息

Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.

European Molecular Biology Laboratory, 22607 Hamburg, Germany.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6342-E6351. doi: 10.1073/pnas.1704692114. Epub 2017 Jul 17.

Abstract

Unfolded states of proteins and native states of intrinsically disordered proteins (IDPs) populate heterogeneous conformational ensembles in solution. The average sizes of these heterogeneous systems, quantified by the radius of gyration ( ), can be measured by small-angle X-ray scattering (SAXS). Another parameter, the mean dye-to-dye distance ( ) for proteins with fluorescently labeled termini, can be estimated using single-molecule Förster resonance energy transfer (smFRET). A number of studies have reported inconsistencies in inferences drawn from the two sets of measurements for the dimensions of unfolded proteins and IDPs in the absence of chemical denaturants. These differences are typically attributed to the influence of fluorescent labels used in smFRET and to the impact of high concentrations and averaging features of SAXS. By measuring the dimensions of a collection of labeled and unlabeled polypeptides using smFRET and SAXS, we directly assessed the contributions of dyes to the experimental values and For chemically denatured proteins we obtain mutual consistency in our inferences based on and , whereas for IDPs under native conditions, we find substantial deviations. Using computations, we show that discrepant inferences are neither due to methodological shortcomings of specific measurements nor due to artifacts of dyes. Instead, our analysis suggests that chemical heterogeneity in heteropolymeric systems leads to a decoupling between and that is amplified in the absence of denaturants. Therefore, joint assessments of and combined with measurements of polymer shapes should provide a consistent and complete picture of the underlying ensembles.

摘要

蛋白质的展开状态和固有无序蛋白质(IDP)的天然状态在溶液中形成异质构象的集合。这些异质体系的平均大小,通过转动半径( )来定量,可以通过小角 X 射线散射(SAXS)来测量。对于具有荧光标记末端的蛋白质,另一个参数,即平均染料-染料距离( ),可以使用单分子Förster 共振能量转移(smFRET)来估计。许多研究报告了在没有化学变性剂的情况下,从两种方法测量展开蛋白质和 IDP 的尺寸得出的推断存在不一致性。这些差异通常归因于 smFRET 中使用的荧光标记的影响,以及 SAXS 的高浓度和平均特征的影响。通过使用 smFRET 和 SAXS 测量一系列标记和未标记多肽的尺寸,我们直接评估了染料对实验值 和 的贡献。对于化学变性的蛋白质,我们基于 和 得出的推断是相互一致的,而对于天然条件下的 IDP,我们发现存在很大的偏差。通过计算,我们表明,不一致的推断既不是由于特定测量方法的方法学缺陷造成的,也不是由于染料的伪影造成的。相反,我们的分析表明,杂多聚合物体系中的化学异质性导致 和 之间的解耦,在没有变性剂的情况下会被放大。因此, 和 的联合评估结合聚合物形状的测量应该提供对基础集合体的一致和完整的描述。

相似文献

1
Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6342-E6351. doi: 10.1073/pnas.1704692114. Epub 2017 Jul 17.
2
Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET.
J Am Chem Soc. 2020 Sep 16;142(37):15697-15710. doi: 10.1021/jacs.0c02088. Epub 2020 Sep 4.
3
Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins.
Biophys J. 2017 Sep 5;113(5):1012-1024. doi: 10.1016/j.bpj.2017.07.023.
5
Dimension conversion and scaling of disordered protein chains.
Mol Biosyst. 2016 Aug 16;12(9):2932-40. doi: 10.1039/c6mb00415f.
6
Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles.
J Phys Chem B. 2021 Jun 24;125(24):6451-6478. doi: 10.1021/acs.jpcb.1c02453. Epub 2021 Jun 11.
8
Commonly used FRET fluorophores promote collapse of an otherwise disordered protein.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8889-8894. doi: 10.1073/pnas.1813038116. Epub 2019 Apr 16.
9
Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods.
J Am Chem Soc. 2016 Sep 14;138(36):11714-26. doi: 10.1021/jacs.6b05917. Epub 2016 Sep 1.
10
Quantitative Description of Intrinsically Disordered Proteins Using Single-Molecule FRET, NMR, and SAXS.
J Am Chem Soc. 2021 Dec 8;143(48):20109-20121. doi: 10.1021/jacs.1c06264. Epub 2021 Nov 24.

引用本文的文献

1
Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates.
ACS Cent Sci. 2025 Feb 11;11(2):302-321. doi: 10.1021/acscentsci.4c01617. eCollection 2025 Feb 26.
2
Intrinsic stiffness and -solvent regime in intrinsically disordered proteins: Implications for liquid-liquid phase separation.
PNAS Nexus. 2025 Feb 5;4(2):pgaf039. doi: 10.1093/pnasnexus/pgaf039. eCollection 2025 Feb.
3
Identifying Sequence Effects on Chain Dimensions of Disordered Proteins by Integrating Experiments and Simulations.
JACS Au. 2024 Nov 14;4(12):4729-4743. doi: 10.1021/jacsau.4c00673. eCollection 2024 Dec 23.
4
Sequence-dependent conformational preferences of disordered single-stranded RNA.
Cell Rep Phys Sci. 2024 Nov 20;5(11). doi: 10.1016/j.xcrp.2024.102264. Epub 2024 Oct 29.
5
A genetically encoded anomalous SAXS ruler to probe the dimensions of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2415220121. doi: 10.1073/pnas.2415220121. Epub 2024 Dec 6.
6
Phosphorylation of disordered proteins tunes local and global intramolecular interactions.
Biophys J. 2024 Dec 3;123(23):4082-4096. doi: 10.1016/j.bpj.2024.10.021. Epub 2024 Nov 13.
7
Phosphorylation of disordered proteins tunes local and global intramolecular interactions.
bioRxiv. 2024 Jun 12:2024.06.10.598315. doi: 10.1101/2024.06.10.598315.
8
Transferable deep generative modeling of intrinsically disordered protein conformations.
PLoS Comput Biol. 2024 May 23;20(5):e1012144. doi: 10.1371/journal.pcbi.1012144. eCollection 2024 May.
10
Protein ensemble modeling and analysis with MMMx.
Protein Sci. 2024 Mar;33(3):e4906. doi: 10.1002/pro.4906.

本文引用的文献

1
CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins.
Biophys J. 2017 Jan 10;112(1):16-21. doi: 10.1016/j.bpj.2016.11.3200.
2
Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation.
J Am Chem Soc. 2016 Nov 30;138(47):15323-15335. doi: 10.1021/jacs.6b10272. Epub 2016 Nov 17.
3
Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment.
J Am Chem Soc. 2016 Sep 14;138(36):11702-13. doi: 10.1021/jacs.6b05443. Epub 2016 Sep 1.
4
Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods.
J Am Chem Soc. 2016 Sep 14;138(36):11714-26. doi: 10.1021/jacs.6b05917. Epub 2016 Sep 1.
5
Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5389-98. doi: 10.1073/pnas.1607193113. Epub 2016 Aug 26.
6
Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins.
Annu Rev Biophys. 2016 Jul 5;45:207-31. doi: 10.1146/annurev-biophys-062215-010915. Epub 2016 May 2.
7
Folding of Protein L with Implications for Collapse in the Denatured State Ensemble.
J Am Chem Soc. 2016 Mar 2;138(8):2609-16. doi: 10.1021/jacs.5b11300. Epub 2016 Feb 16.
10
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.
Cell. 2015 Oct 22;163(3):734-45. doi: 10.1016/j.cell.2015.09.047. Epub 2015 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验