Suppr超能文献

使用自体兔软骨细胞构建复合气管组织工程。

Tissue engineering of a composite trachea construct using autologous rabbit chondrocytes.

机构信息

Department of Orthopedic Surgery.

Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA.

出版信息

J Tissue Eng Regen Med. 2018 Mar;12(3):e1383-e1391. doi: 10.1002/term.2523. Epub 2017 Nov 10.

Abstract

The repair of large tracheal segmental defects remains an unsolved problem. The goal of this study is to apply tissue engineering principles for the fabrication of large segmental trachea replacements. Engineered tracheal replacements composed of autologous cells (neotracheas) were tested in a New Zealand White rabbit model. Neotracheas were formed in the rabbit neck by wrapping a silicone tube with consecutive layers of skin epithelium, platysma muscle, and an engineered cartilage sheet and allowing the construct to mature for 8-12 weeks. In total, 28 rabbits were implanted and the neotracheas assessed for tissue morphology. In 11 cases, neotracheas deemed sufficiently strong were used to repair segmental tracheal defects. Initially, the success rate of producing structurally sound neotracheas was impeded by physical disruption of the cartilage sheets during animal handling, but by the end of the study, 15 of 18 neotracheas (83.3%) were structurally sound. Of the 15 structurally sound neotracheas, 11 were used for segmental reconstruction and were left in place for up to 21 days. Histological examination showed the presence of variable amounts of viable epithelium, a vascularized platysma flap, and a layer of safranin O-positive cartilage along with evidence of endochondral ossification. Rabbits that had undergone segmental reconstruction showed good tracheal integration, had a viable epithelium with vascular support, and the cartilage was sufficiently strong to maintain a lumen when palpated. The results demonstrated that viable, trilayered, scaffold-free neotracheas could be constructed from autologous cells and could be integrated into native trachea to repair a segmental defect.

摘要

修复大段气管节段性缺损仍然是一个未解决的问题。本研究的目的是应用组织工程学原理来制造大段气管节段性替代物。在新西兰白兔模型中,测试了由自体细胞(新生气管)制成的工程化气管替代物。通过用皮肤上皮细胞、颈阔肌和工程化软骨片连续层包裹硅胶管,并允许构建体成熟 8-12 周,在兔颈部形成新生气管。总共植入了 28 只兔子,并对新生气管的组织形态进行了评估。在 11 例中,认为足够坚固的新生气管被用于修复节段性气管缺损。最初,由于动物处理过程中软骨片的物理破坏,导致产生结构坚固的新生气管的成功率受到阻碍,但在研究结束时,18 个新生气管中有 15 个(83.3%)结构坚固。在 15 个结构坚固的新生气管中,有 11 个用于节段性重建,并放置了长达 21 天。组织学检查显示存在不同数量的存活上皮、血管化颈阔肌瓣和一层番红 O 阳性软骨,以及软骨内骨化的证据。进行了节段性重建的兔子表现出良好的气管整合,有存活的上皮细胞和血管支持,软骨足够坚固,在触诊时可以维持管腔。结果表明,能够构建出具有三层结构、无支架的、源自自体细胞的新生气管,并能够整合到天然气管中以修复节段性缺损。

相似文献

1
Tissue engineering of a composite trachea construct using autologous rabbit chondrocytes.
J Tissue Eng Regen Med. 2018 Mar;12(3):e1383-e1391. doi: 10.1002/term.2523. Epub 2017 Nov 10.
2
Tissue-engineered trachea for airway reconstruction.
Laryngoscope. 2009 Nov;119(11):2118-23. doi: 10.1002/lary.20700.
3
Bioengineered trachea using autologous chondrocytes for regeneration of tracheal cartilage in a rabbit model.
Laryngoscope. 2013 Sep;123(9):2195-201. doi: 10.1002/lary.23784. Epub 2013 Jul 2.
5
Long-segmental tracheal reconstruction in rabbits with pedicled Tissue-engineered trachea based on a 3D-printed scaffold.
Acta Biomater. 2019 Oct 1;97:177-186. doi: 10.1016/j.actbio.2019.07.043. Epub 2019 Jul 26.
6
Fabrication of a neotrachea using engineered cartilage.
Laryngoscope. 2008 Apr;118(4):593-8. doi: 10.1097/MLG.0b013e318161f9f8.
7
Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold.
Int J Pediatr Otorhinolaryngol. 2014 Jan;78(1):32-8. doi: 10.1016/j.ijporl.2013.10.014. Epub 2013 Oct 30.
8
Scaffold-Free Tracheal Engineering via a Modular Strategy Based on Cartilage and Epithelium Sheets.
Adv Healthc Mater. 2023 Jan;12(6):e2202022. doi: 10.1002/adhm.202202022. Epub 2022 Dec 11.
9
Tracheal Reconstruction with the Scaffolded Cartilage Sheets in an Orthotopic Animal Model.
Tissue Eng Part A. 2022 Aug;28(15-16):685-699. doi: 10.1089/ten.TEA.2021.0193.

引用本文的文献

1
Bioengineered tracheal graft with enhanced vascularization and mechanical stability for functional airway reconstruction.
Regen Ther. 2025 Apr 9;29:364-380. doi: 10.1016/j.reth.2025.03.016. eCollection 2025 Jun.
2
Multi-Tissue Integrated Tissue-Engineered Trachea Regeneration Based on 3D Printed Bioelastomer Scaffolds.
Adv Sci (Weinh). 2024 Oct;11(39):e2405420. doi: 10.1002/advs.202405420. Epub 2024 Aug 19.
3
Construction of a novel cell-free tracheal scaffold promoting vascularization for repairing tracheal defects.
Mater Today Bio. 2023 Oct 20;23:100841. doi: 10.1016/j.mtbio.2023.100841. eCollection 2023 Dec.
4
Instant trachea reconstruction using 3D-bioprinted -shape biomimetic trachea based on tissue-specific matrix hydrogels.
Bioact Mater. 2023 Sep 29;32:52-65. doi: 10.1016/j.bioactmat.2023.09.011. eCollection 2024 Feb.
5
Synoviocyte-Derived Extracellular Matrix and bFGF Speed Human Chondrocyte Proliferation While Maintaining Differentiation Potential.
Front Bioeng Biotechnol. 2022 May 24;10:825005. doi: 10.3389/fbioe.2022.825005. eCollection 2022.
8
Tissue engineering applications in otolaryngology-The state of translation.
Laryngoscope Investig Otolaryngol. 2020 Jun 19;5(4):630-648. doi: 10.1002/lio2.416. eCollection 2020 Aug.
9
High-Throughput, Temporal and Dose Dependent, Effect of Vitamins and Minerals on Chondrogenesis.
Front Cell Dev Biol. 2020 Feb 25;8:92. doi: 10.3389/fcell.2020.00092. eCollection 2020.

本文引用的文献

1
Tissue Engineered Airways: A Prospects Article.
J Cell Biochem. 2016 Jul;117(7):1497-505. doi: 10.1002/jcb.25512. Epub 2016 Apr 4.
2
Trachea transplants test the limits.
Science. 2013 Apr 19;340(6130):266-8. doi: 10.1126/science.340.6130.266.
4
Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits.
Biomaterials. 2013 Apr;34(13):3336-44. doi: 10.1016/j.biomaterials.2013.01.060. Epub 2013 Feb 4.
5
Interventional and intrinsic airway homeostasis and repair.
Physiology (Bethesda). 2012 Jun;27(3):140-7. doi: 10.1152/physiol.00001.2012.
6
Overview of tracheal tissue engineering: clinical need drives the laboratory approach.
Ann Biomed Eng. 2011 Aug;39(8):2091-113. doi: 10.1007/s10439-011-0318-1. Epub 2011 May 19.
7
Scaffold-free tissue-engineered cartilage implants for laryngotracheal reconstruction.
Laryngoscope. 2010 Mar;120(3):612-7. doi: 10.1002/lary.20750.
8
In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering.
Pediatr Surg Int. 2010 Feb;26(2):179-85. doi: 10.1007/s00383-009-2543-3. Epub 2009 Nov 27.
9
Tissue-engineered trachea for airway reconstruction.
Laryngoscope. 2009 Nov;119(11):2118-23. doi: 10.1002/lary.20700.
10
In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage.
Biomed Mater. 2009 Apr;4(2):025006. doi: 10.1088/1748-6041/4/2/025006. Epub 2009 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验