Suppr超能文献

通过 Proteogenomic 管道 Splicify 鉴定差异表达的剪接变体。

Identification of Differentially Expressed Splice Variants by the Proteogenomic Pipeline Splicify.

机构信息

From the ‡Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.

§Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands.

出版信息

Mol Cell Proteomics. 2017 Oct;16(10):1850-1863. doi: 10.1074/mcp.TIR117.000056. Epub 2017 Jul 26.

Abstract

Proteogenomics, comprehensive integration of genomics and proteomics data, is a powerful approach identifying novel protein biomarkers. This is especially the case for proteins that differ structurally between disease and control conditions. As tumor development is associated with aberrant splicing, we focus on this rich source of cancer specific biomarkers. To this end, we developed a proteogenomic pipeline, Splicify, which can detect differentially expressed protein isoforms. Splicify is based on integrating RNA massive parallel sequencing data and tandem mass spectrometry proteomics data to identify protein isoforms resulting from differential splicing between two conditions. Proof of concept was obtained by applying Splicify to RNA sequencing and mass spectrometry data obtained from colorectal cancer cell line SW480, before and after siRNA-mediated downmodulation of the splicing factors SF3B1 and SRSF1. These analyses revealed 2172 and 149 differentially expressed isoforms, respectively, with peptide confirmation upon knock-down of SF3B1 and SRSF1 compared with their controls. Splice variants identified included RAC1, OSBPL3, MKI67, and SYK. One additional sample was analyzed by PacBio Iso-Seq full-length transcript sequencing after SF3B1 downmodulation. This analysis verified the alternative splicing identified by Splicify and in addition identified novel splicing events that were not represented in the human reference genome annotation. Therefore, Splicify offers a validated proteogenomic data analysis pipeline for identification of disease specific protein biomarkers resulting from mRNA alternative splicing. Splicify is publicly available on GitHub (https://github.com/NKI-TGO/SPLICIFY) and suitable to address basic research questions using pre-clinical model systems as well as translational research questions using patient-derived samples, allowing to identify clinically relevant biomarkers.

摘要

蛋白质基因组学,全面整合基因组学和蛋白质组学数据,是一种识别新型蛋白质生物标志物的强大方法。对于在疾病和对照条件下结构不同的蛋白质尤其如此。由于肿瘤的发生与异常剪接有关,我们专注于这个丰富的癌症特异性生物标志物来源。为此,我们开发了一种蛋白质基因组学管道 Splicify,可以检测差异表达的蛋白质同工型。Splicify 基于整合 RNA 大规模平行测序数据和串联质谱蛋白质组学数据,以鉴定两种条件之间差异剪接产生的蛋白质同工型。通过将 Splicify 应用于从结直肠癌细胞系 SW480 获得的 RNA 测序和质谱数据,在 SF3B1 和 SRSF1 的 siRNA 介导下调前后,获得了概念验证。这些分析分别显示了 2172 个和 149 个差异表达的同工型,与对照相比,SF3B1 和 SRSF1 的敲低有肽确认。鉴定的剪接变体包括 RAC1、OSBPL3、MKI67 和 SYK。在 SF3B1 下调后,还对另一个样本进行了 PacBio Iso-Seq 全长转录测序分析。该分析验证了 Splicify 鉴定的可变剪接,并额外鉴定了未在人类参考基因组注释中表示的新剪接事件。因此,Splicify 提供了一种经过验证的蛋白质基因组数据分析管道,用于鉴定由 mRNA 可变剪接引起的疾病特异性蛋白质生物标志物。Splicify 可在 GitHub(https://github.com/NKI-TGO/SPLICIFY)上公开获得,适用于使用临床前模型系统解决基础研究问题,以及使用患者来源样本解决转化研究问题,从而识别临床相关的生物标志物。

相似文献

1
Identification of Differentially Expressed Splice Variants by the Proteogenomic Pipeline Splicify.
Mol Cell Proteomics. 2017 Oct;16(10):1850-1863. doi: 10.1074/mcp.TIR117.000056. Epub 2017 Jul 26.
3
ASV-ID, a Proteogenomic Workflow To Predict Candidate Protein Isoforms on the Basis of Transcript Evidence.
J Proteome Res. 2018 Dec 7;17(12):4235-4242. doi: 10.1021/acs.jproteome.8b00548. Epub 2018 Oct 15.
5
PASS: A Proteomics Alternative Splicing Screening Pipeline.
Proteomics. 2019 Jul;19(13):e1900041. doi: 10.1002/pmic.201900041. Epub 2019 Jun 13.
6
Knockdown of SF3B1 inhibits cell proliferation, invasion and migration triggering apoptosis in breast cancer via aberrant splicing.
Breast Cancer. 2020 May;27(3):464-476. doi: 10.1007/s12282-020-01045-8. Epub 2020 Jan 9.
7
Identification of novel alternative splicing biomarkers for breast cancer with LC/MS/MS and RNA-Seq.
BMC Bioinformatics. 2020 Dec 3;21(Suppl 9):541. doi: 10.1186/s12859-020-03824-8.
8
Enhanced protein isoform characterization through long-read proteogenomics.
Genome Biol. 2022 Mar 3;23(1):69. doi: 10.1186/s13059-022-02624-y.

引用本文的文献

1
Challenges in identifying mRNA transcript starts and ends from long-read sequencing data.
Genome Res. 2024 Nov 20;34(11):1719-1734. doi: 10.1101/gr.279559.124.
2
OncoSplicing 3.0: an updated database for identifying RBPs regulating alternative splicing events in cancers.
Nucleic Acids Res. 2025 Jan 6;53(D1):D1460-D1466. doi: 10.1093/nar/gkae1098.
3
SF3B3-regulated mTOR alternative splicing promotes colorectal cancer progression and metastasis.
J Exp Clin Cancer Res. 2024 Apr 26;43(1):126. doi: 10.1186/s13046-024-03053-4.
5
Integrative Proteogenomics Using ProteomeGenerator2.
J Proteome Res. 2023 Aug 4;22(8):2750-2764. doi: 10.1021/acs.jproteome.3c00005. Epub 2023 Jul 7.
6
Variant biomarker discovery using mass spectrometry-based proteogenomics.
Front Aging. 2023 Apr 24;4:1191993. doi: 10.3389/fragi.2023.1191993. eCollection 2023.
7
Nuclear Receptors and Lipid Sensing.
Adv Exp Med Biol. 2022;1390:83-105. doi: 10.1007/978-3-031-11836-4_5.
8
Enhanced protein isoform characterization through long-read proteogenomics.
Genome Biol. 2022 Mar 3;23(1):69. doi: 10.1186/s13059-022-02624-y.
10
A Practical Guide to Small Protein Discovery and Characterization Using Mass Spectrometry.
J Bacteriol. 2022 Jan 18;204(1):e0035321. doi: 10.1128/JB.00353-21. Epub 2021 Nov 8.

本文引用的文献

1
Methods, Tools and Current Perspectives in Proteogenomics.
Mol Cell Proteomics. 2017 Jun;16(6):959-981. doi: 10.1074/mcp.MR117.000024. Epub 2017 Apr 29.
2
UniProt: the universal protein knowledgebase.
Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169. doi: 10.1093/nar/gkw1099. Epub 2016 Nov 29.
3
Alternative splicing of spleen tyrosine kinase differentially regulates colorectal cancer progression.
Oncol Lett. 2016 Sep;12(3):1737-1744. doi: 10.3892/ol.2016.4858. Epub 2016 Jul 13.
4
MultiQC: summarize analysis results for multiple tools and samples in a single report.
Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16.
5
RNA splicing factors as oncoproteins and tumour suppressors.
Nat Rev Cancer. 2016 Jul;16(7):413-30. doi: 10.1038/nrc.2016.51. Epub 2016 Jun 10.
6
JUMPg: An Integrative Proteogenomics Pipeline Identifying Unannotated Proteins in Human Brain and Cancer Cells.
J Proteome Res. 2016 Jul 1;15(7):2309-20. doi: 10.1021/acs.jproteome.6b00344. Epub 2016 Jun 13.
8
proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data.
Mol Cell Proteomics. 2016 Mar;15(3):1164-75. doi: 10.1074/mcp.M115.052860. Epub 2015 Dec 11.
9
PGx: Putting Peptides to BED.
J Proteome Res. 2016 Mar 4;15(3):795-9. doi: 10.1021/acs.jproteome.5b00870. Epub 2015 Dec 18.
10
An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer.
Mol Cell Proteomics. 2016 Mar;15(3):1060-71. doi: 10.1074/mcp.M115.056226. Epub 2015 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验