Suppr超能文献

三维仿生血管模型揭示 RhoA、Rac1 和 E-钙黏蛋白在壁细胞-内皮细胞调节的屏障功能中的平衡。

Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and -cadherin balance in mural cell-endothelial cell-regulated barrier function.

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA 02215.

Biological Design Center, Boston University, Boston, MA 02215.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8758-8763. doi: 10.1073/pnas.1618333114. Epub 2017 Aug 1.

Abstract

The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of -cadherin in the mural cells led to loss of barrier function, and overexpression of -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.

摘要

循环血液与组织之间的内皮屏障完整性对于血管功能,最终对于器官稳态非常重要。在这里,我们开发了一种带有灌注的内皮化通道的芯片,这些通道内衬有人骨髓基质细胞,这些细胞表现出类似于壁细胞的表型,再现了血管的屏障功能。在这种模型中,内皮细胞暴露于炎症因子(如 LPS、凝血酶和 TNFα)时,屏障功能会受到损害,这与体内观察到的情况一致。有趣的是,我们观察到炎症时,壁细胞会迅速从内皮细胞上物理性地缩回,同时内皮细胞自身的内源性 Rac1 活性受到抑制,RhoA 活性增加。通过使用一种在刺激后几分钟内化学诱导外源性表达的 Rac1 或 RhoA 活性的系统,我们证明 RhoA 激活会导致壁细胞覆盖内皮的丧失和内皮屏障功能降低,而当 Rac1 同时被激活时,这种效应会被阻断。我们进一步表明,壁细胞中的 -连环蛋白表达在屏障功能中起着关键作用,因为在壁细胞中使用 CRISPR 介导的 -连环蛋白基因敲除会导致屏障功能丧失,而 CHO 细胞中 -连环蛋白的过表达会促进屏障功能。总之,这种双细胞模型证明了内皮细胞和壁细胞之间粘附相互作用的持续和快速调节及其对血管屏障功能的影响,并突出了一种体外平台来研究血管周内皮相互作用的生物学。

相似文献

1
Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and -cadherin balance in mural cell-endothelial cell-regulated barrier function.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8758-8763. doi: 10.1073/pnas.1618333114. Epub 2017 Aug 1.
2
RhoA, RhoB and RhoC differentially regulate endothelial barrier function.
Small GTPases. 2019 Nov;10(6):466-484. doi: 10.1080/21541248.2017.1339767. Epub 2017 Sep 26.
3
Hypoxia-reoxygenation-induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase.
J Physiol. 2013 Jan 15;591(2):461-73. doi: 10.1113/jphysiol.2012.237834. Epub 2012 Oct 22.
4
Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.
PLoS One. 2016 May 17;11(5):e0155490. doi: 10.1371/journal.pone.0155490. eCollection 2016.
5
Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities.
Am J Physiol Lung Cell Mol Physiol. 2013 Aug 15;305(4):L291-300. doi: 10.1152/ajplung.00094.2013. Epub 2013 Jun 14.
7
Wild-type p53 enhances endothelial barrier function by mediating RAC1 signalling and RhoA inhibition.
J Cell Mol Med. 2018 Mar;22(3):1792-1804. doi: 10.1111/jcmm.13460. Epub 2018 Jan 24.
10
CLIC4 Regulates Endothelial Barrier Control by Mediating PAR1 Signaling via RhoA.
Arterioscler Thromb Vasc Biol. 2023 Aug;43(8):1441-1454. doi: 10.1161/ATVBAHA.123.319206. Epub 2023 Jun 15.

引用本文的文献

1
Cellular Responses to Nanoscale Topography Mediated Through the RhoA/ROCK Pathway.
Small. 2025 Aug 18:e05685. doi: 10.1002/smll.202505685.
2
Gastrointestinal tract, its pathophysiology and models: A "quick" reference guide to translational studies.
World J Gastroenterol. 2025 Jul 28;31(28):108297. doi: 10.3748/wjg.v31.i28.108297.
3
Bidirectional Role of Pericytes in Ischemic Stroke.
Brain Sci. 2025 Jun 4;15(6):605. doi: 10.3390/brainsci15060605.
4
Deficiency in N-cadherin-Akt3 signaling impairs the blood-brain barrier.
Cell Rep. 2025 Jun 24;44(6):115831. doi: 10.1016/j.celrep.2025.115831. Epub 2025 Jun 10.
5
Pericytes Promote More Vascularization than Stromal Cells via an Interleukin-6-Dependent Mechanism in Microfluidic Chips.
Adv Sci (Weinh). 2025 Apr;12(14):e2408131. doi: 10.1002/advs.202408131. Epub 2025 Jan 30.
6
Glucocorticoids Alter Bone Microvascular Barrier via MAPK/Connexin43 Mechanisms.
Adv Healthc Mater. 2025 Mar;14(7):e2404302. doi: 10.1002/adhm.202404302. Epub 2025 Jan 20.
8
Ras, RhoA, and vascular pharmacology in neurodevelopment and aging.
Neurochem Int. 2024 Dec;181:105883. doi: 10.1016/j.neuint.2024.105883. Epub 2024 Oct 18.
9
Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids.
Front Cardiovasc Med. 2024 Jun 13;11:1336910. doi: 10.3389/fcvm.2024.1336910. eCollection 2024.
10
Microfluidic techniques for mechanical measurements of biological samples.
Biophys Rev (Melville). 2023 Jan 20;4(1):011303. doi: 10.1063/5.0130762. eCollection 2023 Mar.

本文引用的文献

1
Pericytes from Mesenchymal Stem Cells as a model for the blood-brain barrier.
Sci Rep. 2017 Jan 18;7:39676. doi: 10.1038/srep39676.
2
Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury.
J Clin Invest. 2017 Jan 3;127(1):321-334. doi: 10.1172/JCI87532. Epub 2016 Nov 21.
3
Microfluidic organ-on-chip technology for blood-brain barrier research.
Tissue Barriers. 2016 Jan 28;4(1):e1142493. doi: 10.1080/21688370.2016.1142493. eCollection 2016 Jan-Mar.
4
Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip.
PLoS One. 2016 Mar 1;11(3):e0150360. doi: 10.1371/journal.pone.0150360. eCollection 2016.
5
Mesenchymal stem cells and their relationship to pericytes.
Front Biosci (Landmark Ed). 2016 Jan 1;21(1):130-56. doi: 10.2741/4380.
6
Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro.
Nat Methods. 2016 Feb;13(2):151-7. doi: 10.1038/nmeth.3697. Epub 2015 Dec 21.
7
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E7-15. doi: 10.1073/pnas.1522193112. Epub 2015 Dec 14.
8
Vascular permeability--the essentials.
Ups J Med Sci. 2015;120(3):135-43. doi: 10.3109/03009734.2015.1064501. Epub 2015 Jul 29.
9
Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.
Lab Chip. 2015 Sep 7;15(17):3521-9. doi: 10.1039/c5lc00507h. Epub 2015 Jul 20.
10
Age-related vascular stiffening: causes and consequences.
Front Genet. 2015 Mar 30;6:112. doi: 10.3389/fgene.2015.00112. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验