Suppr超能文献

利用组织工程克服心脏细胞治疗的障碍

Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering.

作者信息

Yanamandala Mounica, Zhu Wuqiang, Garry Daniel J, Kamp Timothy J, Hare Joshua M, Jun Ho-Wook, Yoon Young-Sup, Bursac Nenad, Prabhu Sumanth D, Dorn Gerald W, Bolli Roberto, Kitsis Richard N, Zhang Jianyi

机构信息

Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York.

Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

J Am Coll Cardiol. 2017 Aug 8;70(6):766-775. doi: 10.1016/j.jacc.2017.06.012.

Abstract

Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart's contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality.

摘要

在心肌损伤的动物模型中,各种干细胞或其后代的移植已多次改善心脏功能;然而,临床试验中观察到的益处通常不太一致。一些公认的挑战包括植入细胞的低植入率,以及就人类心肌细胞而言,其功能不成熟和缺乏电整合,导致对心脏收缩活动的贡献有限以及致心律失常风险增加。组织和基因工程技术的进步有望提高移植细胞的存活率和整合率,并支持受体心脏的结构、功能和生物能量恢复。具体而言,应用预制的心脏组织补片来预防梗死心脏的扩张并提高其泵血效率,为使干细胞治疗成为临床现实提供了一种有前景的策略。

相似文献

1
Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering.
J Am Coll Cardiol. 2017 Aug 8;70(6):766-775. doi: 10.1016/j.jacc.2017.06.012.
2
Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts.
PLoS One. 2015 Jul 10;10(7):e0131446. doi: 10.1371/journal.pone.0131446. eCollection 2015.
3
Stem cell engineering for treatment of heart diseases: potentials and challenges.
Cell Biol Int. 2009 Mar;33(3):255-67. doi: 10.1016/j.cellbi.2008.11.009. Epub 2008 Dec 3.
4
Cardiac tissue engineering: a clinical perspective.
Future Cardiol. 2007 Jul;3(4):435-45. doi: 10.2217/14796678.3.4.435.
5
Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine.
Antioxid Redox Signal. 2021 Jul 20;35(3):143-162. doi: 10.1089/ars.2020.8193. Epub 2020 Nov 12.
6
Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model.
Circ Res. 2015 Sep 25;117(8):720-30. doi: 10.1161/CIRCRESAHA.115.306985. Epub 2015 Aug 19.
7
Myocardial tissue engineering: the quest for the ideal myocardial substitute.
Expert Rev Cardiovasc Ther. 2009 Aug;7(8):921-8. doi: 10.1586/erc.09.81.
8
A New Era of Cardiac Cell Therapy: Opportunities and Challenges.
Adv Healthc Mater. 2019 Jan;8(2):e1801011. doi: 10.1002/adhm.201801011. Epub 2018 Dec 13.
9
Stem cells for cardiac regeneration by cell therapy and myocardial tissue engineering.
Adv Biochem Eng Biotechnol. 2009;114:107-28. doi: 10.1007/10_2008_37.
10
Myocardial tissue engineering and heart muscle repair.
Curr Pharm Biotechnol. 2013;14(1):4-11. doi: 10.2174/138920113804805322.

引用本文的文献

1
GelMA micropattern enhances cardiomyocyte organization, maturation, and contraction via contact guidance.
APL Bioeng. 2024 May 1;8(2):026108. doi: 10.1063/5.0182585. eCollection 2024 Jun.
2
To Repair a Broken Heart: Stem Cells in Ischemic Heart Disease.
Curr Issues Mol Biol. 2024 Mar 8;46(3):2181-2208. doi: 10.3390/cimb46030141.
3
Engineered Gold and Silica Nanoparticle-Incorporated Hydrogel Scaffolds for Human Stem Cell-Derived Cardiac Tissue Engineering.
ACS Biomater Sci Eng. 2024 Apr 8;10(4):2351-2366. doi: 10.1021/acsbiomaterials.3c01256. Epub 2024 Feb 7.
4
Advances in the study of exosomes in cardiovascular diseases.
J Adv Res. 2024 Dec;66:133-153. doi: 10.1016/j.jare.2023.12.014. Epub 2023 Dec 18.
7
Effects of macrophages on the proliferation and cardiac differentiation of human induced pluripotent stem cells.
Cell Commun Signal. 2022 Jul 18;20(1):108. doi: 10.1186/s12964-022-00916-1.
8
Cardiomyocyte Maturation-the Road is not Obstructed.
Stem Cell Rev Rep. 2022 Dec;18(8):2966-2981. doi: 10.1007/s12015-022-10407-y. Epub 2022 Jul 5.
9
Turning back the clock: A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair.
J Mol Cell Cardiol. 2022 Sep;170:15-21. doi: 10.1016/j.yjmcc.2022.05.010. Epub 2022 Jun 1.
10
Sustained delivery of rhMG53 promotes diabetic wound healing and hair follicle development.
Bioact Mater. 2022 Mar 16;18:104-115. doi: 10.1016/j.bioactmat.2022.03.017. eCollection 2022 Dec.

本文引用的文献

2
A futile cycle in cell therapy.
Nat Biotechnol. 2017 Apr 11;35(4):291. doi: 10.1038/nbt.3857.
3
Phase I Clinical Trial of Autologous Stem Cell-Sheet Transplantation Therapy for Treating Cardiomyopathy.
J Am Heart Assoc. 2017 Apr 5;6(4):e003918. doi: 10.1161/JAHA.116.003918.
4
Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction.
Basic Res Cardiol. 2017 Mar;112(2):18. doi: 10.1007/s00395-017-0606-5. Epub 2017 Feb 16.
10
Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy: POSEIDON-DCM Trial.
J Am Coll Cardiol. 2017 Feb 7;69(5):526-537. doi: 10.1016/j.jacc.2016.11.009. Epub 2016 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验