Suppr超能文献

通过体内成像和计算建模建立的淋巴管链长度与最大压力产生之间的关系。

The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling.

机构信息

The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.

The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia.

出版信息

Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1249-H1260. doi: 10.1152/ajpheart.00003.2017. Epub 2017 Aug 4.

Abstract

The intrinsic contraction of collecting lymphatic vessels serves as a pumping system to propel lymph against hydrostatic pressure gradients as it returns interstitial fluid to the venous circulation. In the present study, we proposed and validated that the maximum opposing outflow pressure along a chain of lymphangions at which flow can be achieved increases with the length of chain. Using minimally invasive near-infrared imaging to measure the effective pumping pressure at various locations in the rat tail, we demonstrated increases in pumping pressure along the length of the tail. Computational simulations based on a microstructurally motivated model of a chain of lymphangions informed from biaxial testing of isolated vessels was used to provide insights into the pumping mechanisms responsible for the pressure increases observed in vivo. These models suggest that the number of lymphangions in the chain and smooth muscle cell force generation play a significant role in determining the maximum outflow pressure, whereas the frequency of contraction has no effect. In vivo administration of nitric oxide attenuated lymphatic contraction, subsequently lowering the effective pumping pressure. Computational simulations suggest that the reduction in contractile strength of smooth muscle cells in the presence of nitric oxide can account for the reductions in outflow pressure observed along the lymphangion chain in vivo. Thus, combining modeling with multiple measurements of lymphatic pumping pressure provides a method for approximating intrinsic lymphatic muscle activity noninvasively in vivo while also providing insights into factors that determine the extent that a lymphangion chain can transport fluid against an adverse pressure gradient. NEW & NOTEWORTHY Here, we report the first minimally invasive in vivo measurements of the relationship between lymphangion chain length and lymphatic pumping pressure. We also provide the first in vivo validation of lumped parameter models of lymphangion chains previously developed through data obtained from isolated vessel testing.

摘要

收集淋巴管的固有收缩起到泵送系统的作用,将淋巴液逆着静水压力梯度推进,将间质液返回到静脉循环。在本研究中,我们提出并验证了,在淋巴管链中,最大的反向流出压力随着链的长度增加而增加,在该压力下可以实现流动。我们使用微创近红外成像技术来测量大鼠尾巴不同位置的有效泵送压力,证明了沿着尾巴长度泵送压力的增加。基于从分离血管的双轴测试中获得的淋巴管链的微观结构驱动模型的计算模拟,用于深入了解负责体内观察到的压力增加的泵送机制。这些模型表明,链中的淋巴管数量和平滑肌细胞力的产生在确定最大流出压力方面起着重要作用,而收缩频率没有影响。体内给予一氧化氮会减弱淋巴管收缩,从而降低有效泵送压力。计算模拟表明,在存在一氧化氮的情况下平滑肌细胞收缩强度的降低可以解释体内观察到的淋巴管链中流出压力的降低。因此,将建模与对淋巴管泵送压力的多次测量相结合,提供了一种非侵入性地在体内近似内在淋巴管肌肉活动的方法,同时还深入了解了决定淋巴管链可以逆着不利压力梯度输送液体的程度的因素。 新的和值得注意的是,在这里,我们报告了第一个微创体内测量淋巴管链长度和淋巴泵送压力之间关系的研究。我们还首次对以前通过从分离血管测试中获得的数据开发的淋巴管链集中参数模型进行了体内验证。

相似文献

1
The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling.
Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1249-H1260. doi: 10.1152/ajpheart.00003.2017. Epub 2017 Aug 4.
2
Lymphangion coordination minimally affects mean flow in lymphatic vessels.
Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H1183-9. doi: 10.1152/ajpheart.01340.2006. Epub 2007 Apr 27.
3
The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate?
J Biomech Eng. 2024 Sep 1;146(9). doi: 10.1115/1.4065217.
4
Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
Biomech Model Mechanobiol. 2021 Oct;20(5):1941-1968. doi: 10.1007/s10237-021-01486-w. Epub 2021 Jul 17.
5
Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H847-60. doi: 10.1152/ajpheart.00669.2015. Epub 2016 Jan 8.
6
First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2144-9. doi: 10.1152/ajpheart.00781.2007. Epub 2008 Mar 7.
7
Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
J Biomech Eng. 2011 Jan;133(1):011008. doi: 10.1115/1.4002799.
8
Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.
PLoS One. 2016 Feb 4;11(2):e0148384. doi: 10.1371/journal.pone.0148384. eCollection 2016.
9
Mechanical forces and lymphatic transport.
Microvasc Res. 2014 Nov;96:46-54. doi: 10.1016/j.mvr.2014.07.013. Epub 2014 Aug 5.
10
Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
Am J Physiol Heart Circ Physiol. 2013 Dec;305(12):H1709-17. doi: 10.1152/ajpheart.00403.2013. Epub 2013 Oct 11.

引用本文的文献

1
2
Computational fluid dynamic modeling of the lymphatic system: a review of existing models and future directions.
Biomech Model Mechanobiol. 2024 Feb;23(1):3-22. doi: 10.1007/s10237-023-01780-9. Epub 2023 Oct 30.
4
A multiscale sliding filament model of lymphatic muscle pumping.
Biomech Model Mechanobiol. 2021 Dec;20(6):2179-2202. doi: 10.1007/s10237-021-01501-0. Epub 2021 Sep 2.
5
Fluid pumping of peristaltic vessel fitted with elastic valves.
J Fluid Mech. 2021 Jul 10;918. doi: 10.1017/jfm.2021.302. Epub 2021 May 11.
6
Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation.
J R Soc Interface. 2020 Sep;17(170):20200598. doi: 10.1098/rsif.2020.0598. Epub 2020 Sep 30.
7
Lymphatic remodelling in response to lymphatic injury in the hind limbs of sheep.
Nat Biomed Eng. 2020 Jun;4(6):649-661. doi: 10.1038/s41551-019-0493-1. Epub 2019 Dec 23.
9
Endothelin-1 inhibits size dependent lymphatic clearance of PEG-based conjugates after intra-articular injection into the rat knee.
Acta Biomater. 2019 Jul 15;93:270-281. doi: 10.1016/j.actbio.2019.04.025. Epub 2019 Apr 12.
10
Lymphatic Vessel Network Structure and Physiology.
Compr Physiol. 2018 Dec 13;9(1):207-299. doi: 10.1002/cphy.c180015.

本文引用的文献

3
Obesity but not high-fat diet impairs lymphatic function.
Int J Obes (Lond). 2016 Oct;40(10):1582-1590. doi: 10.1038/ijo.2016.96. Epub 2016 May 20.
5
Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice.
JCI Insight. 2016 Feb 1;1(2). doi: 10.1172/jci.insight.85096. Epub 2016 Feb 25.
6
Postprandial lymphatic pump function after a high-fat meal: a characterization of contractility, flow, and viscosity.
Am J Physiol Gastrointest Liver Physiol. 2016 May 15;310(10):G776-89. doi: 10.1152/ajpgi.00318.2015. Epub 2016 Mar 11.
8
Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.
PLoS One. 2016 Feb 4;11(2):e0148384. doi: 10.1371/journal.pone.0148384. eCollection 2016.
10
Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H847-60. doi: 10.1152/ajpheart.00669.2015. Epub 2016 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验