Suppr超能文献

骨源激素对能量代谢的调节。

Regulation of Energy Metabolism by Bone-Derived Hormones.

机构信息

Columbia University Medical Center, New York, New York 10032.

Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada.

出版信息

Cold Spring Harb Perspect Med. 2018 Jun 1;8(6):a031666. doi: 10.1101/cshperspect.a031666.

Abstract

Like many other organs, bone can act as an endocrine organ through the secretion of bone-specific hormones or "osteokines." At least two osteokines are implicated in the control of glucose and energy metabolism: osteocalcin (OCN) and lipocalin-2 (LCN2). OCN stimulates the production and secretion of insulin by the pancreatic β-cells, but also favors adaptation to exercise by stimulating glucose and fatty acid (FA) utilization by the muscle. Both of these OCN functions are mediated by the G-protein-coupled receptor GPRC6A. In contrast, LCN2 influences energy metabolism by activating appetite-suppressing signaling in the brain. This action of LCN2 occurs through its binding to the melanocortin 4 receptor (MC4R) in the paraventricular nucleus of the hypothalamus (PVN) and ventromedial neurons of the hypothalamus.

摘要

与许多其他器官一样,骨骼可以通过分泌特定于骨骼的激素或“骨因子”来充当内分泌器官。至少有两种骨因子参与了葡萄糖和能量代谢的控制:骨钙素(OCN)和脂钙素 2(LCN2)。OCN 刺激胰岛 β 细胞产生和分泌胰岛素,但也通过刺激肌肉利用葡萄糖和脂肪酸(FA)来促进对运动的适应。OCN 的这两种功能均由 G 蛋白偶联受体 GPRC6A 介导。相比之下,LCN2 通过激活下丘脑室旁核(PVN)和下丘脑腹内侧神经元中的食欲抑制信号来影响能量代谢。LCN2 的这种作用是通过其与下丘脑室旁核和下丘脑腹内侧神经元中的黑皮质素 4 受体(MC4R)结合来实现的。

相似文献

1
Regulation of Energy Metabolism by Bone-Derived Hormones.
Cold Spring Harb Perspect Med. 2018 Jun 1;8(6):a031666. doi: 10.1101/cshperspect.a031666.
2
MC4R-dependent suppression of appetite by bone-derived lipocalin 2.
Nature. 2017 Mar 16;543(7645):385-390. doi: 10.1038/nature21697. Epub 2017 Mar 8.
3
Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks.
Endocrinology. 2012 May;153(5):2062-9. doi: 10.1210/en.2011-2117. Epub 2012 Feb 28.
4
Explaining Divergent Observations Regarding Osteocalcin/GPRC6A Endocrine Signaling.
Endocrinology. 2021 Apr 1;162(4). doi: 10.1210/endocr/bqab011.
5
Associations between circulating bone-derived hormones lipocalin 2, osteocalcin, and glucose metabolism in acromegaly.
J Endocrinol Invest. 2020 Sep;43(9):1309-1316. doi: 10.1007/s40618-020-01221-9. Epub 2020 Mar 20.
6
Bone: Another potential target to treat, prevent and predict diabetes.
Diabetes Obes Metab. 2018 Aug;20(8):1817-1828. doi: 10.1111/dom.13330. Epub 2018 May 14.
7
GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo.
J Bone Miner Res. 2011 Jul;26(7):1680-3. doi: 10.1002/jbmr.390.
8
An overview of the metabolic functions of osteocalcin.
Rev Endocr Metab Disord. 2015 Jun;16(2):93-8. doi: 10.1007/s11154-014-9307-7.
9
Osteocalcin, energy and glucose metabolism.
Arq Bras Endocrinol Metabol. 2014 Jul;58(5):444-51. doi: 10.1590/0004-2730000003333.
10
[Bone and metabolism].
Ann Endocrinol (Paris). 2018 Sep;79 Suppl 1:S40-S47. doi: 10.1016/S0003-4266(18)31236-8.

引用本文的文献

1
A systematic analysis of human hormone receptors.
Sci China Life Sci. 2025 Sep 5. doi: 10.1007/s11427-024-2950-4.
2
Osteocalcin has many tricks to get γ-carboxylated.
Cell Res. 2025 Sep 5. doi: 10.1038/s41422-025-01177-6.
3
Two decades into the crosstalk between bone and energy metabolism.
Nat Rev Endocrinol. 2025 Sep 4. doi: 10.1038/s41574-025-01179-9.
6
Bone-brain interaction: mechanisms and potential intervention strategies of biomaterials.
Bone Res. 2025 Mar 17;13(1):38. doi: 10.1038/s41413-025-00404-5.
8
The Protective Role of Vitamin K in Aging and Age-Related Diseases.
Nutrients. 2024 Dec 16;16(24):4341. doi: 10.3390/nu16244341.
9
Bone-organ axes: bidirectional crosstalk.
Mil Med Res. 2024 Jun 12;11(1):37. doi: 10.1186/s40779-024-00540-9.

本文引用的文献

1
Mechanism of Bone Mineralization.
Cold Spring Harb Perspect Med. 2018 Dec 3;8(12):a031229. doi: 10.1101/cshperspect.a031229.
2
Neural Regulation of Bone and Bone Marrow.
Cold Spring Harb Perspect Med. 2018 Sep 4;8(9):a031344. doi: 10.1101/cshperspect.a031344.
3
Regulation of Bone Remodeling by Parathyroid Hormone.
Cold Spring Harb Perspect Med. 2018 Aug 1;8(8):a031237. doi: 10.1101/cshperspect.a031237.
4
Multiple Myeloma and Bone: The Fatal Interaction.
Cold Spring Harb Perspect Med. 2018 Aug 1;8(8):a031286. doi: 10.1101/cshperspect.a031286.
5
The Bone Marrow Microenvironment in Health and Myeloid Malignancy.
Cold Spring Harb Perspect Med. 2018 Jul 2;8(7):a031328. doi: 10.1101/cshperspect.a031328.
6
Regulation of Bone Metabolism by Sex Steroids.
Cold Spring Harb Perspect Med. 2018 Jan 2;8(1):a031211. doi: 10.1101/cshperspect.a031211.
7
MC4R-dependent suppression of appetite by bone-derived lipocalin 2.
Nature. 2017 Mar 16;543(7645):385-390. doi: 10.1038/nature21697. Epub 2017 Mar 8.
8
Association between osteocalcin gamma-carboxylation and insulin resistance in overweight and obese postmenopausal women.
J Diabetes Complications. 2017 Jun;31(6):1027-1034. doi: 10.1016/j.jdiacomp.2017.01.023. Epub 2017 Feb 13.
9
Wnt/β-catenin signaling in osteoblasts regulates global energy metabolism.
Bone. 2017 Apr;97:175-183. doi: 10.1016/j.bone.2017.01.028. Epub 2017 Jan 23.
10
Osteocalcin Improves Metabolic Profiles, Body Composition and Arterial Stiffening in an Induced Diabetic Rat Model.
Exp Clin Endocrinol Diabetes. 2017 Apr;125(4):234-240. doi: 10.1055/s-0042-122138. Epub 2017 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验