Suppr超能文献

人自然杀伤细胞制备的优化:全自动分离,使用 IL-21 和自体饲养细胞进行体外扩增的改进,以及生成表达抗 CD123-CAR 的效应细胞。

Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.

机构信息

1 Institute for Cellular Therapeutics, GMPDU, IFB-Tx, Hannover Medical School , Hannover, Germany.

2 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany.

出版信息

Hum Gene Ther. 2017 Oct;28(10):897-913. doi: 10.1089/hum.2017.157. Epub 2017 Aug 15.

Abstract

The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56CD3) was carried out with the CliniMACS Prodigy in a single process, starting with approximately 1.2 × 10 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 10 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO10, CellGro, TexMACS, and NK MACS). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56CD3 target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3 depletion and CD56 enrichment steps. Manually performed experiments to test different culture media demonstrated significantly higher NK cell expansion rates and an approximately equal distribution of CD56CD16 and CD56CD16 NK subsets on day 14 with cells cultivated in NK MACS media. Moreover, effector cell expansion in manually performed experiments with NK MACS containing IL-2 and irradiated autologous FCs and IL-21, both added at the initiation of the culture, induced an 85-fold NK cell expansion. Compared to freshly isolated NK cells, expanded NK cells expressed significantly higher levels of NKp30, NKp44, NKG2D, TRAIL, FasL, CD69, and CD137, and showed comparable cell viabilities and killing/degranulation activities against tumor and leukemic cell lines in vitro. NK cells used for CAR transduction showed the highest anti-CD123 CAR expression on day 3 after gene modification. These anti-CD123 CAR-engineered NK cells demonstrated improved cytotoxicity against the CD123 AML cell line KG1a and primary AML blasts. In addition, CAR NK cells showed higher degranulation and enhanced secretion of tumor necrosis factor alpha, interferon gamma, and granzyme A and B. In fluorescence imaging, specific interactions that initiated apoptotic processes in the AML target cells were detected between CAR NK cells and KG1a. After the fully automated NK cell separation process on Prodigy, a new NK cell expansion protocol was generated that resulted in high numbers of NK cells with potent antitumor activity, which could be modified efficiently by novel third-generation, alpha-retroviral SIN vector constructs. Next steps are the integration of the manual expansion procedure in the fully integrated platform for a standardized GMP-compliant overall process in this closed system that also may include gene modification of NK cells to optimize target-specific antitumor activity.

摘要

体外扩增自然杀伤 (NK) 细胞作为潜在的抗肿瘤效应细胞进行过继细胞免疫治疗,似乎适用于高危癌症患者。然而,以足够高的数量进行符合良好生产规范 (GMP) 的临床级 NK 细胞生产,代表着巨大的挑战。因此,以前的那些效应细胞的扩增方案通过使用新开发的培养基、白细胞介素 (IL)-21 和自体饲养细胞 (FC) 得到了改进和优化。通过 CliniMACS Prodigy 从通过小体积淋巴液采集或从浓缩白细胞中分离出的约 1.2×10 个原代人 NK 细胞 (CD56+CD3−) 进行单次处理。富集 NK 细胞的起始细胞浓度调整为约 1×10 个效应细胞/mL,并在不同的 GMP 兼容培养基 (X-VIVO10、CellGro、TexMACS 和 NK MACS) 中进行 14 天的比较扩增实验,其中包含 IL-2 (1000IU/mL)。在培养基优化后,在存在或不存在 IL-21(100ng/mL)的情况下,在细胞扩增的早期阶段,用辐照 (25Gy) 的自体 FC 以 20:1 的比例 (饲养细胞:NK) 对起始细胞进行有益的功能和表型影响。此外,还对扩增的 NK 细胞进行了基因修饰,使其表达针对急性髓细胞白血病 (AML) 常见标志物 CD123 的嵌合抗原受体 (CAR)。通过流式细胞术分析和荧光成像测定转导的 NK 细胞对 KG1a 细胞的细胞毒性、脱颗粒和细胞因子释放。Prodigy 制造工艺显示靶细胞活力高 (中位数 95.4%)、NK 细胞回收率适中 (中位数 60.4%),CD56+CD3+靶细胞纯度为 95.4%。该工艺在其早期开发阶段导致 CD3 耗尽后 T 细胞的中位数清除率为 log3.5,包括 CD3 耗尽和 CD56 富集步骤后 T 细胞的中位数清除率为 log3.6。为了测试不同的培养基,手动进行的实验显示,在 NK MACS 培养基中培养的细胞在第 14 天具有更高的 NK 细胞扩增率,并且 CD56+CD16 和 CD56+CD16 NK 亚群的分布大致相等。此外,在手动进行的实验中,用含有 IL-2 和辐照自体 FCs 的 NK MACS 进行效应细胞扩增,并在培养开始时添加 IL-21,可诱导 NK 细胞扩增 85 倍。与新鲜分离的 NK 细胞相比,扩增的 NK 细胞表达更高水平的 NKp30、NKp44、NKG2D、TRAIL、FasL、CD69 和 CD137,并且对体外肿瘤和白血病细胞系具有相当的细胞活力和杀伤/脱颗粒活性。用于 CAR 转导的 NK 细胞在基因修饰后第 3 天显示出最高的抗 CD123 CAR 表达。这些抗 CD123 CAR 工程化的 NK 细胞对 CD123 AML 细胞系 KG1a 和原代 AML 母细胞显示出改善的细胞毒性。此外,CAR NK 细胞显示出更高的脱颗粒和增强的肿瘤坏死因子 alpha、干扰素 gamma 和颗粒酶 A 和 B 的分泌。在荧光成像中,在 AML 靶细胞之间检测到 CAR NK 细胞与 KG1a 之间启动凋亡过程的特异性相互作用。在 Prodigy 上进行全自动 NK 细胞分离过程后,生成了一种新的 NK 细胞扩增方案,该方案产生了大量具有强大抗肿瘤活性的 NK 细胞,这些细胞可以通过新型第三代、α-逆转录病毒 SIN 载体构建物有效地进行修饰。下一步是将手动扩展程序集成到完全集成的平台中,以实现封闭系统中符合 GMP 的标准化整体流程,这也可能包括基因修饰 NK 细胞以优化针对特定肿瘤的抗肿瘤活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验