Benito-Cuesta Irene, Diez Héctor, Ordoñez Lara, Wandosell Francisco
Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/Nicolas Cabrera 1, Universidad Autonoma Madrid, Madrid 28049, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, Madrid 28049, Spain.
Cells. 2017 Aug 23;6(3):25. doi: 10.3390/cells6030025.
Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer's, Prion or Parkinson's disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer's disease, considering this pathology as one of the most prevalent proteinopathies.
自噬是一个复杂的过程,它控制着细胞质成分向溶酶体的转运以便进行降解。这个高度保守的蛋白水解系统涉及动态且复杂的过程,从酵母到人类都使用相似的分子元件和机制。此外,自噬功能障碍可能导致多种哺乳动物疾病。实际上,在成年组织中,再生或细胞分裂能力较低或缺乏(例如在哺乳动物大脑中),那些原本会被循环利用或破坏的蛋白质/肽的积累可能具有病理意义。的确,这种变化是诸如阿尔茨海默病、朊病毒病或帕金森病等病理状态的标志,这些疾病被称为蛋白病。然而,在这些情况下这种功能障碍是病因还是结果仍不清楚。在哺乳动物大脑中分析自噬的一个优势在于,几乎所有在不同细胞谱系和系统中描述的标志物似乎都存在于大脑中,甚至在神经元中也存在。相比之下,与培养的神经元相比,大脑中存在的细胞类型混合物以及这些神经元的分化阶段使得将基础研究转化为临床应用不那么直接。因此,本综述的目的是描述和讨论可用于监测神经元和哺乳动物大脑中自噬的方法,这一过程尚未被完全理解,主要聚焦于哺乳动物的巨自噬。我们将描述神经元自噬的一些一般特征,这些特征指向我们对巨自噬可能发生改变的神经病理学的关注。的确,我们围绕这样一个假设展开本综述,即增强自噬可能能够在某些脑部疾病(如阿尔茨海默病)中提供治疗益处,将这种疾病视为最常见的蛋白病之一。