Suppr超能文献

雪貂模型中流感候选疫苗病毒的致病性测试。

Pathogenicity testing of influenza candidate vaccine viruses in the ferret model.

作者信息

Belser Jessica A, Johnson Adam, Pulit-Penaloza Joanna A, Pappas Claudia, Pearce Melissa B, Tzeng Wen-Pin, Hossain M Jaber, Ridenour Callie, Wang Li, Chen Li-Mei, Wentworth David E, Katz Jacqueline M, Maines Taronna R, Tumpey Terrence M

机构信息

Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.

出版信息

Virology. 2017 Nov;511:135-141. doi: 10.1016/j.virol.2017.08.024. Epub 2017 Aug 29.

Abstract

The development of influenza candidate vaccine viruses (CVVs) for pre-pandemic vaccine production represents a critical step in pandemic preparedness. The multiple subtypes and clades of avian or swine origin influenza viruses circulating world-wide at any one time necessitates the continuous generation of CVVs to provide an advanced starting point should a novel zoonotic virus cross the species barrier and cause a pandemic. Furthermore, the evolution and diversity of novel influenza viruses that cause zoonotic infections requires ongoing monitoring and surveillance, and, when a lack of antigenic match between circulating viruses and available CVVs is identified, the production of new CVVs. Pandemic guidelines developed by the WHO Global Influenza Program govern the design and preparation of reverse genetics-derived CVVs, which must undergo numerous safety and quality tests prior to human use. Confirmation of reassortant CVV attenuation of virulence in ferrets relative to wild-type virus represents one of these critical steps, yet there is a paucity of information available regarding the relative degree of attenuation achieved by WHO-recommended CVVs developed against novel viruses with pandemic potential. To better understand the degree of CVV attenuation in the ferret model, we examined the relative virulence of six A/Puerto Rico/8/1934-based CVVs encompassing five different influenza A subtypes (H2N3, H5N1, H5N2, H5N8, and H7N9) compared with the respective wild-type virus in ferrets. Despite varied virulence of wild-type viruses in the ferret, all CVVs examined showed reductions in morbidity and viral shedding in upper respiratory tract tissues. Furthermore, unlike the wild-type counterparts, none of the CVVs spread to extrapulmonary tissues during the acute phase of infection. While the magnitude of virus attenuation varied between virus subtypes, collectively we show the reliable and reproducible attenuation of CVVs that have the A/Puerto Rico/9/1934 backbone in a mammalian model.

摘要

用于大流行前疫苗生产的流感候选疫苗病毒(CVV)的研发是大流行防范中的关键一步。在任何时候,全球范围内流行的多种亚型和进化枝的禽源或猪源流感病毒,都需要持续生成CVV,以便在新的人畜共患病毒跨越物种屏障并引发大流行时提供一个先进的起始点。此外,导致人畜共患感染的新型流感病毒的进化和多样性需要持续监测,并且当发现流行病毒与可用CVV之间缺乏抗原匹配时,需要生产新的CVV。世界卫生组织全球流感项目制定的大流行指南指导了基于反向遗传学的CVV的设计和制备,这些CVV在用于人类之前必须经过大量的安全性和质量测试。相对于野生型病毒,雪貂体内重组CVV毒力减弱的确认是这些关键步骤之一,但关于针对具有大流行潜力的新型病毒研发的世卫组织推荐CVV所达到的相对减弱程度,可用信息匮乏。为了更好地了解雪貂模型中CVV的减弱程度,我们研究了六种基于A/波多黎各/8/1934的CVV的相对毒力,这些CVV涵盖五种不同的甲型流感病毒亚型(H2N3、H5N1、H5N2、H5N8和H7N9),并与雪貂体内相应的野生型病毒进行了比较。尽管野生型病毒在雪貂体内的毒力各不相同,但所有检测的CVV在上呼吸道组织中的发病率和病毒脱落都有所降低。此外,与野生型病毒不同,在感染急性期,没有一种CVV扩散到肺外组织。虽然病毒减弱的程度在不同病毒亚型之间有所不同,但总体而言,我们证明了在哺乳动物模型中,具有A/波多黎各/9/1934主干的CVV具有可靠且可重复的减弱效果。

相似文献

1
Pathogenicity testing of influenza candidate vaccine viruses in the ferret model.
Virology. 2017 Nov;511:135-141. doi: 10.1016/j.virol.2017.08.024. Epub 2017 Aug 29.
3
Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs.
Influenza Other Respir Viruses. 2015 Sep;9(5):263-70. doi: 10.1111/irv.12322.
4
Development of a new candidate H5N1 avian influenza virus for pre-pandemic vaccine production.
Influenza Other Respir Viruses. 2009 Nov;3(6):287-95. doi: 10.1111/j.1750-2659.2009.00104.x.
6
Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice.
J Virol. 2015 Oct;89(20):10286-93. doi: 10.1128/JVI.01438-15. Epub 2015 Jul 29.
9
Development of a high-yield reassortant influenza vaccine virus derived from the A/Anhui/1/2013 (H7N9) strain.
Vaccine. 2016 Jan 12;34(3):328-33. doi: 10.1016/j.vaccine.2015.11.050. Epub 2015 Dec 1.

引用本文的文献

3
Assessment of a quadrivalent nucleoside-modified mRNA vaccine that protects against group 2 influenza viruses.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2206333119. doi: 10.1073/pnas.2206333119. Epub 2022 Nov 2.
4
An In Vitro Microneutralization Assay for Influenza Virus Serology.
Curr Protoc. 2022 Jul;2(7):e465. doi: 10.1002/cpz1.465.
5
Avian influenza overview November 2017 - February 2018.
EFSA J. 2018 Mar 28;16(3):e05240. doi: 10.2903/j.efsa.2018.5240. eCollection 2018 Mar.
6
Avian influenza overview September - November 2017.
EFSA J. 2017 Dec 22;15(12):e05141. doi: 10.2903/j.efsa.2017.5141. eCollection 2017 Dec.
7
The antiviral effects of baloxavir marboxil against influenza A virus infection in ferrets.
Influenza Other Respir Viruses. 2020 Nov;14(6):710-719. doi: 10.1111/irv.12760. Epub 2020 Jun 13.
8
A Guide for the Use of the Ferret Model for Influenza Virus Infection.
Am J Pathol. 2020 Jan;190(1):11-24. doi: 10.1016/j.ajpath.2019.09.017. Epub 2019 Oct 23.
10
Repeated vaccination against matched H3N2 influenza virus gives less protection than single vaccination in ferrets.
NPJ Vaccines. 2019 Jul 9;4:28. doi: 10.1038/s41541-019-0123-7. eCollection 2019.

本文引用的文献

1
Novel influenza A viruses and pandemic threats.
Lancet. 2017 Jun 3;389(10085):2172-2174. doi: 10.1016/S0140-6736(17)31274-6.
2
Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets.
Virology. 2017 Feb;502:114-122. doi: 10.1016/j.virol.2016.12.024. Epub 2016 Dec 27.
3
Evaluation of a candidate live attenuated influenza vaccine prepared in Changchun BCHT (China) for safety and efficacy in ferrets.
Vaccine. 2016 Nov 21;34(48):5953-5958. doi: 10.1016/j.vaccine.2016.09.059. Epub 2016 Oct 26.
5
Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation.
PLoS One. 2015 Sep 25;10(9):e0138951. doi: 10.1371/journal.pone.0138951. eCollection 2015.
6
Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice.
J Virol. 2015 Oct;89(20):10286-93. doi: 10.1128/JVI.01438-15. Epub 2015 Jul 29.
8
Determination of Predominance of Influenza Virus Strains in the Americas.
Emerg Infect Dis. 2015 Jul;21(7):1209-12. doi: 10.3201/eid2107.140788.
9
Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs.
PLoS One. 2015 Jun 11;10(6):e0128982. doi: 10.1371/journal.pone.0128982. eCollection 2015.
10
Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs.
Influenza Other Respir Viruses. 2015 Sep;9(5):263-70. doi: 10.1111/irv.12322.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验