Belser Jessica A, Johnson Adam, Pulit-Penaloza Joanna A, Pappas Claudia, Pearce Melissa B, Tzeng Wen-Pin, Hossain M Jaber, Ridenour Callie, Wang Li, Chen Li-Mei, Wentworth David E, Katz Jacqueline M, Maines Taronna R, Tumpey Terrence M
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Virology. 2017 Nov;511:135-141. doi: 10.1016/j.virol.2017.08.024. Epub 2017 Aug 29.
The development of influenza candidate vaccine viruses (CVVs) for pre-pandemic vaccine production represents a critical step in pandemic preparedness. The multiple subtypes and clades of avian or swine origin influenza viruses circulating world-wide at any one time necessitates the continuous generation of CVVs to provide an advanced starting point should a novel zoonotic virus cross the species barrier and cause a pandemic. Furthermore, the evolution and diversity of novel influenza viruses that cause zoonotic infections requires ongoing monitoring and surveillance, and, when a lack of antigenic match between circulating viruses and available CVVs is identified, the production of new CVVs. Pandemic guidelines developed by the WHO Global Influenza Program govern the design and preparation of reverse genetics-derived CVVs, which must undergo numerous safety and quality tests prior to human use. Confirmation of reassortant CVV attenuation of virulence in ferrets relative to wild-type virus represents one of these critical steps, yet there is a paucity of information available regarding the relative degree of attenuation achieved by WHO-recommended CVVs developed against novel viruses with pandemic potential. To better understand the degree of CVV attenuation in the ferret model, we examined the relative virulence of six A/Puerto Rico/8/1934-based CVVs encompassing five different influenza A subtypes (H2N3, H5N1, H5N2, H5N8, and H7N9) compared with the respective wild-type virus in ferrets. Despite varied virulence of wild-type viruses in the ferret, all CVVs examined showed reductions in morbidity and viral shedding in upper respiratory tract tissues. Furthermore, unlike the wild-type counterparts, none of the CVVs spread to extrapulmonary tissues during the acute phase of infection. While the magnitude of virus attenuation varied between virus subtypes, collectively we show the reliable and reproducible attenuation of CVVs that have the A/Puerto Rico/9/1934 backbone in a mammalian model.
用于大流行前疫苗生产的流感候选疫苗病毒(CVV)的研发是大流行防范中的关键一步。在任何时候,全球范围内流行的多种亚型和进化枝的禽源或猪源流感病毒,都需要持续生成CVV,以便在新的人畜共患病毒跨越物种屏障并引发大流行时提供一个先进的起始点。此外,导致人畜共患感染的新型流感病毒的进化和多样性需要持续监测,并且当发现流行病毒与可用CVV之间缺乏抗原匹配时,需要生产新的CVV。世界卫生组织全球流感项目制定的大流行指南指导了基于反向遗传学的CVV的设计和制备,这些CVV在用于人类之前必须经过大量的安全性和质量测试。相对于野生型病毒,雪貂体内重组CVV毒力减弱的确认是这些关键步骤之一,但关于针对具有大流行潜力的新型病毒研发的世卫组织推荐CVV所达到的相对减弱程度,可用信息匮乏。为了更好地了解雪貂模型中CVV的减弱程度,我们研究了六种基于A/波多黎各/8/1934的CVV的相对毒力,这些CVV涵盖五种不同的甲型流感病毒亚型(H2N3、H5N1、H5N2、H5N8和H7N9),并与雪貂体内相应的野生型病毒进行了比较。尽管野生型病毒在雪貂体内的毒力各不相同,但所有检测的CVV在上呼吸道组织中的发病率和病毒脱落都有所降低。此外,与野生型病毒不同,在感染急性期,没有一种CVV扩散到肺外组织。虽然病毒减弱的程度在不同病毒亚型之间有所不同,但总体而言,我们证明了在哺乳动物模型中,具有A/波多黎各/9/1934主干的CVV具有可靠且可重复的减弱效果。