Suppr超能文献

超越编辑,迈向书写大型基因组。

Beyond editing to writing large genomes.

作者信息

Chari Raj, Church George M

机构信息

Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA.

Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA, and at the Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts, 02115, USA.

出版信息

Nat Rev Genet. 2017 Dec;18(12):749-760. doi: 10.1038/nrg.2017.59. Epub 2017 Aug 30.

Abstract

Recent exponential advances in genome sequencing and engineering technologies have enabled an unprecedented level of interrogation into the impact of DNA variation (genotype) on cellular function (phenotype). Furthermore, these advances have also prompted realistic discussion of writing and radically re-writing complex genomes. In this Perspective, we detail the motivation for large-scale engineering, discuss the progress made from such projects in bacteria and yeast and describe how various genome-engineering technologies will contribute to this effort. Finally, we describe the features of an ideal platform and provide a roadmap to facilitate the efficient writing of large genomes.

摘要

基因组测序和工程技术最近呈指数级发展,使得人们能够以前所未有的深度探究DNA变异(基因型)对细胞功能(表型)的影响。此外,这些进展也引发了关于编写和彻底重写复杂基因组的现实讨论。在这篇观点文章中,我们详细阐述了大规模工程的动机,讨论了在细菌和酵母中此类项目所取得的进展,并描述了各种基因组工程技术将如何助力这一努力。最后,我们描述了理想平台的特征,并提供了一个路线图以促进大型基因组的高效编写。

相似文献

1
Beyond editing to writing large genomes.
Nat Rev Genet. 2017 Dec;18(12):749-760. doi: 10.1038/nrg.2017.59. Epub 2017 Aug 30.
2
Genome Writing: Current Progress and Related Applications.
Genomics Proteomics Bioinformatics. 2018 Feb;16(1):10-16. doi: 10.1016/j.gpb.2018.02.001. Epub 2018 Feb 21.
3
Current and future editing reagent delivery systems for plant genome editing.
Sci China Life Sci. 2017 May;60(5):490-505. doi: 10.1007/s11427-017-9022-1. Epub 2017 May 1.
4
5
Targeted Base Editing Systems Are Available for Plants.
Trends Plant Sci. 2018 Nov;23(11):955-957. doi: 10.1016/j.tplants.2018.08.011. Epub 2018 Sep 14.
6
Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts.
Plant Cell Rep. 2016 Jul;35(7):1493-506. doi: 10.1007/s00299-016-1990-2. Epub 2016 May 3.
7
Synthesizing Manifested Biology.
Trends Biotechnol. 2018 Sep;36(9):867-868. doi: 10.1016/j.tibtech.2018.07.001. Epub 2018 Jul 24.
8
Genome engineering tools for building cellular models of disease.
FEBS J. 2016 Sep;283(17):3222-31. doi: 10.1111/febs.13763. Epub 2016 Jun 22.
9
Genome editing technologies drive the development of pig genetic improvement.
Yi Chuan. 2017 Nov 20;39(11):1078-1089. doi: 10.16288/j.yczz.17-130.
10
Synthetic Genomes.
Annu Rev Biochem. 2020 Jun 20;89:77-101. doi: 10.1146/annurev-biochem-013118-110704.

引用本文的文献

1
Advances in large-scale DNA engineering with the CRISPR system.
Exp Mol Med. 2025 Sep 1. doi: 10.1038/s12276-025-01530-0.
3
Self-authenticating genomic materials in Escherichia coli via advanced genome signatures.
Commun Biol. 2025 May 16;8(1):762. doi: 10.1038/s42003-025-08171-z.
4
The design and engineering of synthetic genomes.
Nat Rev Genet. 2025 May;26(5):298-319. doi: 10.1038/s41576-024-00786-y. Epub 2024 Nov 6.
6
Potential approaches to create ultimate genotypes in crops and livestock.
Nat Genet. 2024 Nov;56(11):2310-2317. doi: 10.1038/s41588-024-01942-0. Epub 2024 Oct 14.
7
Xenobiology for the Biocontainment of Synthetic Organisms: Opportunities and Challenges.
Life (Basel). 2024 Aug 10;14(8):996. doi: 10.3390/life14080996.
10
Future trends in synthetic biology in Asia.
Adv Genet (Hoboken). 2021 Mar 5;2(1):e10038. doi: 10.1002/ggn2.10038. eCollection 2021 Mar.

本文引用的文献

2
No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells.
PLoS One. 2017 May 11;12(5):e0177444. doi: 10.1371/journal.pone.0177444. eCollection 2017.
3
CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes.
Cell. 2017 Apr 20;169(3):559. doi: 10.1016/j.cell.2017.04.005.
4
Marker-free coselection for CRISPR-driven genome editing in human cells.
Nat Methods. 2017 Jun;14(6):615-620. doi: 10.1038/nmeth.4265. Epub 2017 Apr 17.
5
Design of a synthetic yeast genome.
Science. 2017 Mar 10;355(6329):1040-1044. doi: 10.1126/science.aaf4557.
6
Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond.
Science. 2017 Mar 10;355(6329). doi: 10.1126/science.aaf4831.
7
Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome.
Science. 2017 Mar 10;355(6329). doi: 10.1126/science.aaf4791.
8
"Perfect" designer chromosome V and behavior of a ring derivative.
Science. 2017 Mar 10;355(6329). doi: 10.1126/science.aaf4704.
9
Engineering the ribosomal DNA in a megabase synthetic chromosome.
Science. 2017 Mar 10;355(6329). doi: 10.1126/science.aaf3981.
10
A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases.
Circ Res. 2017 May 12;120(10):1561-1571. doi: 10.1161/CIRCRESAHA.116.309948. Epub 2017 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验