Suppr超能文献

换挡:腓肠肌内侧的动态肌肉形状变化和力-速度行为

Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.

作者信息

Dick Taylor J M, Wakeling James M

机构信息

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

J Appl Physiol (1985). 2017 Dec 1;123(6):1433-1442. doi: 10.1152/japplphysiol.01050.2016. Epub 2017 Aug 31.

Abstract

When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling.

摘要

肌肉收缩时,其厚度或宽度会鼓起,以维持(近乎)恒定的体积。这些动态形状变化与单个肌纤维所受的内部限制紧密相关,并通过增加骨骼肌的工作速度范围,在调节骨骼肌的机械性能方面发挥关键的功能作用。然而,迄今为止,我们对次最大运动条件下体内动态肌肉形状变化的本质及其功能影响了解有限。本研究确定了腓肠肌内侧(MG)肌束速度、羽状角、肌肉厚度以及随后的肌肉传动比在体内如何随力量和速度而变化。为此,我们在一系列踏频和负荷的骑行过程中,使用B型超声记录了MG肌腱长度、肌束长度、羽状角和厚度,并使用表面肌电图记录了肌肉激活情况。我们发现,收缩力增加伴随着肌肉厚度鼓起的减少、羽状角增加的减少以及肌束更快的缩短。尽管由于力-速度效应,肌肉收缩的力量和速度呈负相关,但本研究表明了动态肌肉形状变化如何受力量影响而不受速度影响。在运动过程中,骨骼肌收缩并在厚度或宽度上鼓起。这些形状变化通过增加骨骼肌的工作速度范围,在调节骨骼肌性能方面发挥关键作用。然而,迄今为止,与肌肉形状变化相关的潜在机制在很大程度上仍未得到探索。本研究确定肌肉力量而非速度是在人类骑行过程中使肌肉传动比根据收缩条件而变化的机制驱动因素。

相似文献

1
Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.
J Appl Physiol (1985). 2017 Dec 1;123(6):1433-1442. doi: 10.1152/japplphysiol.01050.2016. Epub 2017 Aug 31.
2
Muscle architecture and shape changes in the gastrocnemii of active younger and older adults.
J Biomech. 2021 Dec 2;129:110823. doi: 10.1016/j.jbiomech.2021.110823. Epub 2021 Oct 22.
3
In vivo manipulation of muscle shape and tendinous stiffness affects the human ability to generate torque rapidly.
Exp Physiol. 2021 Feb;106(2):486-495. doi: 10.1113/EP089012. Epub 2020 Dec 15.
4
Stuck in gear: age-related loss of variable gearing in skeletal muscle.
J Exp Biol. 2016 Apr;219(Pt 7):998-1003. doi: 10.1242/jeb.133009.
5
Influence of internal muscle properties on muscle shape change and gearing in the human gastrocnemii.
J Appl Physiol (1985). 2023 Jun 1;134(6):1520-1529. doi: 10.1152/japplphysiol.00080.2023. Epub 2023 May 11.
6
How does passive lengthening change the architecture of the human medial gastrocnemius muscle?
J Appl Physiol (1985). 2017 Apr 1;122(4):727-738. doi: 10.1152/japplphysiol.00976.2016. Epub 2017 Jan 19.
7
Aponeurosis influences the relationship between muscle gearing and force.
J Appl Physiol (1985). 2018 Aug 1;125(2):513-519. doi: 10.1152/japplphysiol.00151.2018. Epub 2018 May 24.
8
Muscle gearing during isotonic and isokinetic movements in the ankle plantarflexors.
Eur J Appl Physiol. 2013 Feb;113(2):437-47. doi: 10.1007/s00421-012-2448-z. Epub 2012 Jul 10.
9
Passive and dynamic muscle architecture during transverse loading for gastrocnemius medialis in man.
J Biomech. 2019 Mar 27;86:160-166. doi: 10.1016/j.jbiomech.2019.01.054. Epub 2019 Feb 12.
10

引用本文的文献

1
Landmark-free statistical shape modelling reveals effects of age and sex on whole muscle morphology among the triceps surae.
R Soc Open Sci. 2025 Apr 9;12(4):250198. doi: 10.1098/rsos.250198. eCollection 2025 Apr.
2
Using physiologically based models to predict in vivo skeletal muscle energetics.
J Exp Biol. 2025 Apr 1;228(7). doi: 10.1242/jeb.249966. Epub 2025 Mar 31.
3
Rethinking the physiological cross-sectional area of skeletal muscle reveals the mechanical advantage of pennation.
R Soc Open Sci. 2024 Sep 18;11(9):240037. doi: 10.1098/rsos.240037. eCollection 2024 Sep.
6
Effects of altered contractile environment on muscle shape change in the human triceps surae.
J Exp Biol. 2024 Dec 1;227(23). doi: 10.1242/jeb.248118. Epub 2024 Dec 2.
7
Impairments in muscle shape changes affect metabolic demands during contractions.
Proc Biol Sci. 2023 Sep 13;290(2006):20231469. doi: 10.1098/rspb.2023.1469. Epub 2023 Sep 6.
9
What good is a measure of muscle length? The how and why of direct measurements of skeletal muscle motion.
J Biomech. 2023 Aug;157:111709. doi: 10.1016/j.jbiomech.2023.111709. Epub 2023 Jul 1.

本文引用的文献

2
Quantifying Achilles tendon force in vivo from ultrasound images.
J Biomech. 2016 Oct 3;49(14):3200-3207. doi: 10.1016/j.jbiomech.2016.07.036. Epub 2016 Aug 8.
3
Determinants of aponeurosis shape change during muscle contraction.
J Biomech. 2016 Jun 14;49(9):1812-1817. doi: 10.1016/j.jbiomech.2016.04.022. Epub 2016 Apr 26.
4
Stuck in gear: age-related loss of variable gearing in skeletal muscle.
J Exp Biol. 2016 Apr;219(Pt 7):998-1003. doi: 10.1242/jeb.133009.
5
Muscle coordination limits efficiency and power output of human limb movement under a wide range of mechanical demands.
J Neurophysiol. 2015 Dec;114(6):3283-95. doi: 10.1152/jn.00765.2015. Epub 2015 Oct 7.
6
Comparative Sensitivity Analysis of Muscle Activation Dynamics.
Comput Math Methods Med. 2015;2015:585409. doi: 10.1155/2015/585409. Epub 2015 Aug 31.
7
Structural and mechanical properties of the human Achilles tendon: Sex and strength effects.
J Biomech. 2015 Sep 18;48(12):3530-3. doi: 10.1016/j.jbiomech.2015.06.009. Epub 2015 Jun 26.
8
The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese.
J R Soc Interface. 2015 Aug 6;12(109):20150365. doi: 10.1098/rsif.2015.0365.
9
Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images.
J Biomech. 2015 Apr 13;48(6):1133-40. doi: 10.1016/j.jbiomech.2015.01.012. Epub 2015 Jan 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验