Chung Jason E, Magland Jeremy F, Barnett Alex H, Tolosa Vanessa M, Tooker Angela C, Lee Kye Y, Shah Kedar G, Felix Sarah H, Frank Loren M, Greengard Leslie F
Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California San Francisco, CA 94158, USA.
Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA.
Neuron. 2017 Sep 13;95(6):1381-1394.e6. doi: 10.1016/j.neuron.2017.08.030.
Understanding the detailed dynamics of neuronal networks will require the simultaneous measurement of spike trains from hundreds of neurons (or more). Currently, approaches to extracting spike times and labels from raw data are time consuming, lack standardization, and involve manual intervention, making it difficult to maintain data provenance and assess the quality of scientific results. Here, we describe an automated clustering approach and associated software package that addresses these problems and provides novel cluster quality metrics. We show that our approach has accuracy comparable to or exceeding that achieved using manual or semi-manual techniques with desktop central processing unit (CPU) runtimes faster than acquisition time for up to hundreds of electrodes. Moreover, a single choice of parameters in the algorithm is effective for a variety of electrode geometries and across multiple brain regions. This algorithm has the potential to enable reproducible and automated spike sorting of larger scale recordings than is currently possible.
要了解神经网络的详细动态,需要同时测量数百个神经元(或更多)的尖峰序列。目前,从原始数据中提取尖峰时间和标签的方法既耗时,又缺乏标准化,还需要人工干预,这使得难以维护数据来源并评估科学结果的质量。在此,我们描述了一种自动化聚类方法及相关软件包,该方法解决了这些问题,并提供了新颖的聚类质量指标。我们表明,我们的方法具有与使用手动或半自动技术相当或更高的准确性,在桌面中央处理器(CPU)上运行时,对于多达数百个电极,其运行时间比采集时间更快。此外,算法中的单一参数选择对于各种电极几何形状以及多个脑区均有效。该算法有可能实现比目前更大规模记录的可重复且自动化的尖峰分类。