Suppr超能文献

一种用于尖峰排序的全自动方法。

A Fully Automated Approach to Spike Sorting.

作者信息

Chung Jason E, Magland Jeremy F, Barnett Alex H, Tolosa Vanessa M, Tooker Angela C, Lee Kye Y, Shah Kedar G, Felix Sarah H, Frank Loren M, Greengard Leslie F

机构信息

Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California San Francisco, CA 94158, USA.

Center for Computational Biology, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA.

出版信息

Neuron. 2017 Sep 13;95(6):1381-1394.e6. doi: 10.1016/j.neuron.2017.08.030.

Abstract

Understanding the detailed dynamics of neuronal networks will require the simultaneous measurement of spike trains from hundreds of neurons (or more). Currently, approaches to extracting spike times and labels from raw data are time consuming, lack standardization, and involve manual intervention, making it difficult to maintain data provenance and assess the quality of scientific results. Here, we describe an automated clustering approach and associated software package that addresses these problems and provides novel cluster quality metrics. We show that our approach has accuracy comparable to or exceeding that achieved using manual or semi-manual techniques with desktop central processing unit (CPU) runtimes faster than acquisition time for up to hundreds of electrodes. Moreover, a single choice of parameters in the algorithm is effective for a variety of electrode geometries and across multiple brain regions. This algorithm has the potential to enable reproducible and automated spike sorting of larger scale recordings than is currently possible.

摘要

要了解神经网络的详细动态,需要同时测量数百个神经元(或更多)的尖峰序列。目前,从原始数据中提取尖峰时间和标签的方法既耗时,又缺乏标准化,还需要人工干预,这使得难以维护数据来源并评估科学结果的质量。在此,我们描述了一种自动化聚类方法及相关软件包,该方法解决了这些问题,并提供了新颖的聚类质量指标。我们表明,我们的方法具有与使用手动或半自动技术相当或更高的准确性,在桌面中央处理器(CPU)上运行时,对于多达数百个电极,其运行时间比采集时间更快。此外,算法中的单一参数选择对于各种电极几何形状以及多个脑区均有效。该算法有可能实现比目前更大规模记录的可重复且自动化的尖峰分类。

相似文献

1
A Fully Automated Approach to Spike Sorting.
Neuron. 2017 Sep 13;95(6):1381-1394.e6. doi: 10.1016/j.neuron.2017.08.030.
2
SpikeDeep-classifier: a deep-learning based fully automatic offline spike sorting algorithm.
J Neural Eng. 2021 Feb 5;18(1). doi: 10.1088/1741-2552/abc8d4.
3
5
Complexity optimization and high-throughput low-latency hardware implementation of a multi-electrode spike-sorting algorithm.
IEEE Trans Neural Syst Rehabil Eng. 2015 Mar;23(2):149-58. doi: 10.1109/TNSRE.2014.2370510. Epub 2014 Nov 13.
6
ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
J Neurosci Methods. 2015 Apr 30;245:182-204. doi: 10.1016/j.jneumeth.2015.01.029. Epub 2015 Feb 4.
7
SpikeInterface, a unified framework for spike sorting.
Elife. 2020 Nov 10;9:e61834. doi: 10.7554/eLife.61834.
8
A multistage mathematical approach to automated clustering of high-dimensional noisy data.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4477-82. doi: 10.1073/pnas.1503940112. Epub 2015 Mar 23.
9
Independent Component Analysis for Fully Automated Multi-Electrode Array Spike Sorting.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2627-2630. doi: 10.1109/EMBC.2018.8512788.

引用本文的文献

2
Voice identity invariance by anterior temporal lobe neurons.
Sci Adv. 2025 Aug 29;11(35):eadv7033. doi: 10.1126/sciadv.adv7033.
5
KIASORT: Knowledge-Integrated Automated Spike Sorting for Geometry-Free Neuron Tracking.
bioRxiv. 2025 Jul 16:2025.07.10.664175. doi: 10.1101/2025.07.10.664175.
7
Compositionality of social gaze in the prefrontal-amygdala circuits.
bioRxiv. 2025 Jul 29:2025.07.28.667161. doi: 10.1101/2025.07.28.667161.
8
Temporal coding carries more stable cortical visual representations than firing rate over time.
Nat Commun. 2025 Aug 4;16(1):7162. doi: 10.1038/s41467-025-62069-2.
9
State-dependent neural representations of muscle synergies in the spinal cord revealed by optogenetic stimulation.
J Physiol. 2025 Aug;603(16):4659-4679. doi: 10.1113/JP288073. Epub 2025 Jul 28.
10
Advanced Brain-on-a-Chip for Wetware Computing: A Review.
Adv Sci (Weinh). 2025 Sep;12(33):e08120. doi: 10.1002/advs.202508120. Epub 2025 Jul 23.

本文引用的文献

3
Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity.
Nano Lett. 2016 Nov 9;16(11):6857-6862. doi: 10.1021/acs.nanolett.6b02673. Epub 2016 Oct 21.
4
Improving data quality in neuronal population recordings.
Nat Neurosci. 2016 Aug 26;19(9):1165-74. doi: 10.1038/nn.4365.
5
Validating silicon polytrodes with paired juxtacellular recordings: method and dataset.
J Neurophysiol. 2016 Aug 1;116(2):892-903. doi: 10.1152/jn.00103.2016. Epub 2016 Jun 15.
6
Spike sorting for large, dense electrode arrays.
Nat Neurosci. 2016 Apr;19(4):634-641. doi: 10.1038/nn.4268. Epub 2016 Mar 14.
7
Validation of neural spike sorting algorithms without ground-truth information.
J Neurosci Methods. 2016 May 1;264:65-77. doi: 10.1016/j.jneumeth.2016.02.022. Epub 2016 Feb 28.
8
Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes.
J Neurophysiol. 2015 Sep;114(3):2043-52. doi: 10.1152/jn.00464.2015. Epub 2015 Jul 1.
9
Clusterless Decoding of Position from Multiunit Activity Using a Marked Point Process Filter.
Neural Comput. 2015 Jul;27(7):1438-60. doi: 10.1162/NECO_a_00744. Epub 2015 May 14.
10
Bayes optimal template matching for spike sorting - combining fisher discriminant analysis with optimal filtering.
J Comput Neurosci. 2015 Jun;38(3):439-59. doi: 10.1007/s10827-015-0547-7. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验