Suppr超能文献

CTCF介导的增强子-启动子相互作用是基因表达细胞间变异的关键调节因子。

CTCF-Mediated Enhancer-Promoter Interaction Is a Critical Regulator of Cell-to-Cell Variation of Gene Expression.

作者信息

Ren Gang, Jin Wenfei, Cui Kairong, Rodrigez Joseph, Hu Gangqing, Zhang Zhiying, Larson Daniel R, Zhao Keji

机构信息

Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.

Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Mol Cell. 2017 Sep 21;67(6):1049-1058.e6. doi: 10.1016/j.molcel.2017.08.026.

Abstract

Recent studies indicate that even a homogeneous population of cells display heterogeneity in gene expression and response to environmental stimuli. Although promoter structure critically influences the cell-to-cell variation of gene expression in bacteria and lower eukaryotes, it remains unclear what controls the gene expression noise in mammals. Here we report that CTCF decreases cell-to-cell variation of expression by stabilizing enhancer-promoter interaction. We show that CTCF binding sites are interwoven with enhancers within topologically associated domains (TADs) and a positive correlation is found between CTCF binding and the activity of the associated enhancers. Deletion of CTCF sites compromises enhancer-promoter interactions. Using single-cell flow cytometry and single-molecule RNA-FISH assays, we demonstrate that knocking down of CTCF or deletion of a CTCF binding site results in increased cell-to-cell variation of gene expression, indicating that long-range promoter-enhancer interaction mediated by CTCF plays important roles in controlling the cell-to-cell variation of gene expression in mammalian cells.

摘要

最近的研究表明,即使是同质的细胞群体在基因表达和对环境刺激的反应方面也存在异质性。尽管启动子结构对细菌和低等真核生物中基因表达的细胞间差异有至关重要的影响,但哺乳动物中是什么控制基因表达噪声仍不清楚。在此我们报告,CTCF通过稳定增强子与启动子的相互作用来降低表达的细胞间差异。我们表明,CTCF结合位点与拓扑相关结构域(TADs)内的增强子相互交织,并且在CTCF结合与相关增强子的活性之间发现了正相关。CTCF位点的缺失会损害增强子与启动子的相互作用。使用单细胞流式细胞术和单分子RNA-FISH分析,我们证明敲低CTCF或删除CTCF结合位点会导致基因表达的细胞间差异增加,这表明由CTCF介导的远距离启动子-增强子相互作用在控制哺乳动物细胞中基因表达的细胞间差异方面发挥重要作用。

相似文献

1
CTCF-Mediated Enhancer-Promoter Interaction Is a Critical Regulator of Cell-to-Cell Variation of Gene Expression.
Mol Cell. 2017 Sep 21;67(6):1049-1058.e6. doi: 10.1016/j.molcel.2017.08.026.
3
The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries.
Mol Cell. 2017 Apr 6;66(1):102-116.e7. doi: 10.1016/j.molcel.2017.02.027.
4
Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation.
Nat Struct Mol Biol. 2021 Feb;28(2):152-161. doi: 10.1038/s41594-020-00539-5. Epub 2021 Jan 4.
5
Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
Nat Cell Biol. 2017 Aug;19(8):952-961. doi: 10.1038/ncb3573. Epub 2017 Jul 24.
7
The characteristics of CTCF binding sequences contribute to enhancer blocking activity.
Nucleic Acids Res. 2024 Sep 23;52(17):10180-10193. doi: 10.1093/nar/gkae666.
9
CTCF shapes chromatin structure and gene expression in health and disease.
EMBO Rep. 2022 Sep 5;23(9):e55146. doi: 10.15252/embr.202255146. Epub 2022 Aug 22.
10
CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9566-71. doi: 10.1073/pnas.1019391108. Epub 2011 May 23.

引用本文的文献

1
SATB1 is a key regulator of quiescence in stem-like CD8 T cells.
Nat Immunol. 2025 Aug 22. doi: 10.1038/s41590-025-02257-w.
3
Positional distribution of transcription factor binding sites in the human genome.
PLoS One. 2025 Jul 30;20(7):e0329226. doi: 10.1371/journal.pone.0329226. eCollection 2025.
5
Unveiling Multi-Scale Architectural Features in Single-Cell Hi-C Data Using scCAFE.
Adv Sci (Weinh). 2025 Jun;12(23):e2416432. doi: 10.1002/advs.202416432. Epub 2025 Apr 24.
6
An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants.
Nat Commun. 2025 Feb 5;16(1):1373. doi: 10.1038/s41467-025-56378-9.
8
LDB1 establishes multi-enhancer networks to regulate gene expression.
Mol Cell. 2025 Jan 16;85(2):376-393.e9. doi: 10.1016/j.molcel.2024.11.037. Epub 2024 Dec 24.
9
A STAG2-PAXIP1/PAGR1 axis suppresses lung tumorigenesis.
J Exp Med. 2025 Jan 6;222(1). doi: 10.1084/jem.20240765. Epub 2024 Dec 9.

本文引用的文献

2
GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.
PLoS One. 2017 Apr 5;12(4):e0174744. doi: 10.1371/journal.pone.0174744. eCollection 2017.
3
CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.
Cell. 2015 Dec 17;163(7):1611-27. doi: 10.1016/j.cell.2015.11.024. Epub 2015 Dec 10.
5
Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription.
Mol Cell. 2015 Nov 19;60(4):597-610. doi: 10.1016/j.molcel.2015.09.028. Epub 2015 Nov 5.
6
Transcription factor trapping by RNA in gene regulatory elements.
Science. 2015 Nov 20;350(6263):978-81. doi: 10.1126/science.aad3346. Epub 2015 Oct 29.
7
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65. doi: 10.1073/pnas.1518552112. Epub 2015 Oct 23.
8
CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.
Cell. 2015 Aug 13;162(4):900-10. doi: 10.1016/j.cell.2015.07.038.
9
A CTCF Code for 3D Genome Architecture.
Cell. 2015 Aug 13;162(4):703-5. doi: 10.1016/j.cell.2015.07.053.
10
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验