Suppr超能文献

果蝇时空整合视觉信号以控制眼球跳动。

Drosophila Spatiotemporally Integrates Visual Signals to Control Saccades.

机构信息

Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA.

Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA.

出版信息

Curr Biol. 2017 Oct 9;27(19):2901-2914.e2. doi: 10.1016/j.cub.2017.08.035. Epub 2017 Sep 21.

Abstract

Like many visually active animals, including humans, flies generate both smooth and rapid saccadic movements to stabilize their gaze. How rapid body saccades and smooth movement interact for simultaneous object pursuit and gaze stabilization is not understood. We directly observed these interactions in magnetically tethered Drosophila free to rotate about the yaw axis. A moving bar elicited sustained bouts of saccades following the bar, with surprisingly little smooth movement. By contrast, a moving panorama elicited robust smooth movement interspersed with occasional optomotor saccades. The amplitude, angular velocity, and torque transients of bar-fixation saccades were finely tuned to the speed of bar motion and were triggered by a threshold in the temporal integral of the bar error angle rather than its absolute retinal position error. Optomotor saccades were tuned to the dynamics of panoramic image motion and were triggered by a threshold in the integral of velocity over time. A hybrid control model based on integrated motion cues simulates saccade trigger and dynamics. We propose a novel algorithm for tuning fixation saccades in flies.

摘要

和许多视觉活跃的动物一样,包括人类,苍蝇会产生平滑和快速的扫视运动,以稳定他们的注视。目前尚不清楚快速的身体扫视运动和平滑运动如何相互作用,以实现同时进行的目标追踪和注视稳定。我们在自由旋转的磁约束果蝇中直接观察到了这些相互作用。一个移动的棒会引发一连串的扫视运动,这些运动紧随棒的运动,而平滑运动却很少。相比之下,一个移动的全景图会引发强大的平滑运动,偶尔会出现光流性扫视运动。棒固定扫视运动的幅度、角速度和转矩瞬变被精细地调整到棒运动的速度,并由棒误差角的时间积分的阈值而不是其绝对视网膜位置误差触发。光流性扫视运动则根据全景图像运动的动力学进行调整,并由速度随时间的积分的阈值触发。基于综合运动线索的混合控制模型模拟了扫视运动的触发和动力学。我们提出了一种新的算法,用于调整果蝇的固定扫视运动。

相似文献

1
Drosophila Spatiotemporally Integrates Visual Signals to Control Saccades.
Curr Biol. 2017 Oct 9;27(19):2901-2914.e2. doi: 10.1016/j.cub.2017.08.035. Epub 2017 Sep 21.
2
Columnar neurons support saccadic bar tracking in .
Elife. 2023 Apr 4;12:e83656. doi: 10.7554/eLife.83656.
3
Visual stimulation of saccades in magnetically tethered Drosophila.
J Exp Biol. 2006 Aug;209(Pt 16):3170-82. doi: 10.1242/jeb.02369.
4
Motion perception during saccades.
Vision Res. 1993 Jan;33(2):211-20. doi: 10.1016/0042-6989(93)90159-t.
5
The free-flight response of Drosophila to motion of the visual environment.
J Exp Biol. 2008 Jul;211(Pt 13):2026-45. doi: 10.1242/jeb.008268.
6
Confidence in predicted position error explains saccadic decisions during pursuit.
J Neurophysiol. 2021 Mar 1;125(3):748-767. doi: 10.1152/jn.00492.2019. Epub 2020 Dec 23.
7
Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion.
J Neurophysiol. 1996 Dec;76(6):3617-32. doi: 10.1152/jn.1996.76.6.3617.
8
Direct evidence for a position input to the smooth pursuit system.
J Neurophysiol. 2005 Jul;94(1):712-21. doi: 10.1152/jn.00093.2005. Epub 2005 Feb 23.
9
Divergent visual ecology of Drosophila species drives object-tracking strategies matched to landscape sparsity.
Curr Biol. 2024 Oct 21;34(20):4743-4755.e3. doi: 10.1016/j.cub.2024.08.036. Epub 2024 Sep 17.
10
Visuomotor strategies for object approach and aversion in .
J Exp Biol. 2019 Feb 1;222(Pt 3):jeb193730. doi: 10.1242/jeb.193730.

引用本文的文献

1
Serotonin selectively modulates visual responses of object motion detectors in .
bioRxiv. 2025 Aug 13:2025.03.21.644681. doi: 10.1101/2025.03.21.644681.
2
Serotonin selectively modulates visual responses of object motion detectors in .
J Neurophysiol. 2025 Sep 1;134(3):962-984. doi: 10.1152/jn.00154.2025. Epub 2025 Aug 19.
3
Eye structure shapes neuron function in Drosophila motion vision.
Nature. 2025 Jul 23. doi: 10.1038/s41586-025-09276-5.
4
Multisensory integration for active mechanosensation in flight.
bioRxiv. 2025 Jun 24:2025.06.20.660728. doi: 10.1101/2025.06.20.660728.
5
Bilateral interactions of optic-flow sensitive neurons coordinate course control in flies.
Nat Commun. 2024 Oct 12;15(1):8830. doi: 10.1038/s41467-024-53173-w.
6
Divergent visual ecology of Drosophila species drives object-tracking strategies matched to landscape sparsity.
Curr Biol. 2024 Oct 21;34(20):4743-4755.e3. doi: 10.1016/j.cub.2024.08.036. Epub 2024 Sep 17.
8
Flies tune the activity of their multifunctional gyroscope.
Curr Biol. 2024 Aug 19;34(16):3644-3653.e3. doi: 10.1016/j.cub.2024.06.066. Epub 2024 Jul 24.
9
Asynchronous haltere input drives specific wing and head movements in .
Proc Biol Sci. 2024 Jun;291(2024):20240311. doi: 10.1098/rspb.2024.0311. Epub 2024 Jun 12.
10
The influence of saccades on yaw gaze stabilization in fly flight.
PLoS Comput Biol. 2023 Dec 21;19(12):e1011746. doi: 10.1371/journal.pcbi.1011746. eCollection 2023 Dec.

本文引用的文献

1
A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila.
Curr Biol. 2017 Apr 24;27(8):1200-1205. doi: 10.1016/j.cub.2017.03.004. Epub 2017 Apr 6.
2
Object-Detecting Neurons in Drosophila.
Curr Biol. 2017 Mar 6;27(5):680-687. doi: 10.1016/j.cub.2017.01.012. Epub 2017 Feb 9.
4
Cellular evidence for efference copy in Drosophila visuomotor processing.
Nat Neurosci. 2015 Sep;18(9):1247-55. doi: 10.1038/nn.4083. Epub 2015 Aug 3.
5
Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
J Neurosci. 2015 May 13;35(19):7587-99. doi: 10.1523/JNEUROSCI.0652-15.2015.
6
Body saccades of Drosophila consist of stereotyped banked turns.
J Exp Biol. 2015 Mar;218(Pt 6):864-75. doi: 10.1242/jeb.114280. Epub 2015 Feb 5.
7
Asymmetric processing of visual motion for simultaneous object and background responses.
Curr Biol. 2014 Dec 15;24(24):2913-9. doi: 10.1016/j.cub.2014.10.042. Epub 2014 Nov 13.
8
Cellular mechanisms for integral feedback in visually guided behavior.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5700-5. doi: 10.1073/pnas.1400698111. Epub 2014 Mar 31.
9
Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
J Exp Biol. 2014 Feb 15;217(Pt 4):558-69. doi: 10.1242/jeb.097220. Epub 2013 Nov 6.
10
Discriminating external and internal causes for heading changes in freely flying Drosophila.
PLoS Comput Biol. 2013;9(2):e1002891. doi: 10.1371/journal.pcbi.1002891. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验