Suppr超能文献

模拟驱动中枢神经系统疾病中神经炎症的细胞因子调节网络动态。

Modeling cytokine regulatory network dynamics driving neuroinflammation in central nervous system disorders.

作者信息

Anderson Warren D, Vadigepalli Rajanikanth

机构信息

Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA.

Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

出版信息

Drug Discov Today Dis Models. 2016 Spring;19:59-67. doi: 10.1016/j.ddmod.2017.01.003. Epub 2017 Apr 10.

Abstract

A central goal of pharmacological efforts to treat central nervous system (CNS) diseases is to develop systemic therapeutics that can restore CNS homeostasis. Achieving this goal requires a fundamental understanding of CNS function within the organismal context so as to leverage the mechanistic insights on the molecular basis of cellular and tissue functions towards novel drug target identification. The immune system constitutes a key link between the periphery and CNS, and many neurological disorders and neurodegenerative diseases are characterized by immune dysfunction. We review the salient opportunities for applying computational models to CNS disease research, and summarize relevant approaches from studies of immune function and neuroinflammation. While the accurate prediction of disease-related phenomena is often considered the central goal of modeling studies, we highlight the utility of computational modeling applications beyond making predictions, particularly for drawing counterintuitive insights from model-based analysis of multi-parametric and time series data sets.

摘要

治疗中枢神经系统(CNS)疾病的药理学研究的一个核心目标是开发能够恢复CNS内稳态的全身性疗法。要实现这一目标,需要在机体背景下对CNS功能有基本的了解,以便利用对细胞和组织功能分子基础的机制性见解来确定新的药物靶点。免疫系统是外周与CNS之间的关键联系,许多神经疾病和神经退行性疾病都具有免疫功能障碍的特征。我们综述了将计算模型应用于CNS疾病研究的显著机会,并总结了免疫功能和神经炎症研究中的相关方法。虽然疾病相关现象的准确预测通常被认为是建模研究的核心目标,但我们强调计算建模应用的效用不仅仅在于进行预测,特别是对于从基于模型的多参数和时间序列数据集分析中获得违反直觉的见解。

相似文献

1
Modeling cytokine regulatory network dynamics driving neuroinflammation in central nervous system disorders.
Drug Discov Today Dis Models. 2016 Spring;19:59-67. doi: 10.1016/j.ddmod.2017.01.003. Epub 2017 Apr 10.
3
Central nervous system organoids for modeling neurodegenerative diseases.
IUBMB Life. 2022 Aug;74(8):812-825. doi: 10.1002/iub.2595. Epub 2022 Jan 31.
4
The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases.
Vet Immunol Immunopathol. 2012 Jun 15;147(1-2):6-24. doi: 10.1016/j.vetimm.2012.04.005. Epub 2012 Apr 10.
6
Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases.
Brain Behav Immun. 2021 Jan;91:740-755. doi: 10.1016/j.bbi.2020.10.007. Epub 2020 Oct 8.
7
Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges.
CPT Pharmacometrics Syst Pharmacol. 2020 Jan;9(1):5-20. doi: 10.1002/psp4.12478. Epub 2019 Nov 24.
9
[The Role of Microglia in the Homeostasis of the Central Nervous System and Neuroinflammation].
Mol Biol (Mosk). 2019 Sep-Oct;53(5):790-798. doi: 10.1134/S0026898419050057.
10
Basic aspects of the immunology of neuroinflammation.
Mod Trends Pharmacopsychiatry. 2013;28:1-19. doi: 10.1159/000343964. Epub 2013 Feb 27.

引用本文的文献

1
Advances in physiological and clinical relevance of hiPSC-derived brain models for precision medicine pipelines.
Front Cell Neurosci. 2025 Jan 6;18:1478572. doi: 10.3389/fncel.2024.1478572. eCollection 2024.
2
From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling.
iScience. 2024 Nov 5;27(12):111322. doi: 10.1016/j.isci.2024.111322. eCollection 2024 Dec 20.
4
How Repair-or-Dispose Decisions Under Stress Can Initiate Disease Progression.
iScience. 2020 Oct 22;23(11):101701. doi: 10.1016/j.isci.2020.101701. eCollection 2020 Nov 20.
5
Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics.
Front Neuroinform. 2018 Jul 10;12:41. doi: 10.3389/fninf.2018.00041. eCollection 2018.
6
Novel Influences of IL-10 on CNS Inflammation Revealed by Integrated Analyses of Cytokine Networks and Microglial Morphology.
Front Cell Neurosci. 2017 Aug 14;11:233. doi: 10.3389/fncel.2017.00233. eCollection 2017.
7
A data-driven modeling approach to identify disease-specific multi-organ networks driving physiological dysregulation.
PLoS Comput Biol. 2017 Jul 21;13(7):e1005627. doi: 10.1371/journal.pcbi.1005627. eCollection 2017 Jul.

本文引用的文献

1
Inverse Generative Social Science: Backward to the Future.
J Artif Soc Soc Simul. 2023;26(2). doi: 10.18564/jasss.5083. Epub 2023 Mar 31.
2
Balancing the immune response in the brain: IL-10 and its regulation.
J Neuroinflammation. 2016 Nov 24;13(1):297. doi: 10.1186/s12974-016-0763-8.
5
Personalized characterization of diseases using sample-specific networks.
Nucleic Acids Res. 2016 Dec 15;44(22):e164. doi: 10.1093/nar/gkw772. Epub 2016 Sep 4.
7
Feedbacks, Bifurcations, and Cell Fate Decision-Making in the p53 System.
PLoS Comput Biol. 2016 Feb 29;12(2):e1004787. doi: 10.1371/journal.pcbi.1004787. eCollection 2016 Feb.
8
Vascular Smooth Muscle Cells in Atherosclerosis.
Circ Res. 2016 Feb 19;118(4):692-702. doi: 10.1161/CIRCRESAHA.115.306361.
9
Prediction of disease-gene-drug relationships following a differential network analysis.
Cell Death Dis. 2016 Jan 14;7(1):e2040. doi: 10.1038/cddis.2015.393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验