IEEE Trans Med Imaging. 2018 Feb;37(2):384-395. doi: 10.1109/TMI.2017.2743464. Epub 2017 Sep 26.
Incorporation of prior knowledge about organ shape and location is key to improve performance of image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts due to limitations in image acquisition. The highly constrained nature of anatomical objects can be well captured with learning-based techniques. However, in most recent and promising techniques such as CNN-based segmentation it is not obvious how to incorporate such prior knowledge. State-of-the-art methods operate as pixel-wise classifiers where the training objectives do not incorporate the structure and inter-dependencies of the output. To overcome this limitation, we propose a generic training strategy that incorporates anatomical prior knowledge into CNNs through a new regularisation model, which is trained end-to-end. The new framework encourages models to follow the global anatomical properties of the underlying anatomy (e.g. shape, label structure) via learnt non-linear representations of the shape. We show that the proposed approach can be easily adapted to different analysis tasks (e.g. image enhancement, segmentation) and improve the prediction accuracy of the state-of-the-art models. The applicability of our approach is shown on multi-modal cardiac data sets and public benchmarks. In addition, we demonstrate how the learnt deep models of 3-D shapes can be interpreted and used as biomarkers for classification of cardiac pathologies.
在提高图像分析方法的性能方面,纳入关于器官形状和位置的先验知识是关键。特别是,在由于图像采集的限制而导致图像损坏且包含伪影的情况下,先验知识可能很有用。基于学习的技术可以很好地捕获解剖对象的高度约束性质。但是,在最近和最有前途的技术(例如基于 CNN 的分割)中,尚不清楚如何合并此类先验知识。最先进的方法作为像素分类器运行,在这些分类器中,训练目标不包含输出的结构和相互依赖关系。为了克服此限制,我们提出了一种通用的训练策略,该策略通过新的正则化模型将解剖学先验知识纳入 CNN 中,该模型是端到端训练的。新框架通过对形状的学习非线性表示,鼓励模型遵循底层解剖结构的全局解剖属性(例如形状,标签结构)。我们表明,所提出的方法可以轻松地适应不同的分析任务(例如图像增强,分割),并提高最先进模型的预测准确性。我们的方法在多模态心脏数据集和公共基准上进行了应用。此外,我们展示了如何解释和使用所学习的 3D 形状的深度模型作为心脏病理学分类的生物标志物。