Suppr超能文献

FATHMM-XF:通过扩展特征准确预测致病性点突变。

FATHMM-XF: accurate prediction of pathogenic point mutations via extended features.

机构信息

Intelligent Systems Laboratory, University of Bristol, Bristol BS8?1UB, UK.

MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol BS8?2BN, UK.

出版信息

Bioinformatics. 2018 Feb 1;34(3):511-513. doi: 10.1093/bioinformatics/btx536.

Abstract

SUMMARY

We present FATHMM-XF, a method for predicting pathogenic point mutations in the human genome. Drawing on an extensive feature set, FATHMM-XF outperforms competitors on benchmark tests, particularly in non-coding regions where the majority of pathogenic mutations are likely to be found.

AVAILABILITY AND IMPLEMENTATION

The FATHMM-XF web server is available at http://fathmm.biocompute.org.uk/fathmm-xf/, and as tracks on the Genome Tolerance Browser: http://gtb.biocompute.org.uk. Predictions are provided for human genome version GRCh37/hg19. The data used for this project can be downloaded from: http://fathmm.biocompute.org.uk/fathmm-xf/.

CONTACT

mark.rogers@bristol.ac.uk or c.campbell@bristol.ac.uk.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

我们提出了 FATHMM-XF,这是一种预测人类基因组中致病点突变的方法。FATHMM-XF 利用广泛的特征集,在基准测试中优于竞争对手,特别是在大多数致病突变可能被发现的非编码区域。

可用性和实现

FATHMM-XF 网络服务器可在 http://fathmm.biocompute.org.uk/fathmm-xf/ 获得,也可在基因组耐受浏览器上作为轨道使用:http://gtb.biocompute.org.uk。预测结果适用于人类基因组版本 GRCh37/hg19。该项目使用的数据可从以下网址下载:http://fathmm.biocompute.org.uk/fathmm-xf/。

联系方式

mark.rogers@bristol.ac.ukc.campbell@bristol.ac.uk

补充信息

补充数据可在生物信息学在线获得。

相似文献

1
FATHMM-XF: accurate prediction of pathogenic point mutations via extended features.
Bioinformatics. 2018 Feb 1;34(3):511-513. doi: 10.1093/bioinformatics/btx536.
2
CScape-somatic: distinguishing driver and passenger point mutations in the cancer genome.
Bioinformatics. 2020 Jun 1;36(12):3637-3644. doi: 10.1093/bioinformatics/btaa242.
4
CScape: a tool for predicting oncogenic single-point mutations in the cancer genome.
Sci Rep. 2017 Sep 14;7(1):11597. doi: 10.1038/s41598-017-11746-4.
5
A benchmark study of scoring methods for non-coding mutations.
Bioinformatics. 2018 May 15;34(10):1635-1641. doi: 10.1093/bioinformatics/bty008.
6
GTB - an online genome tolerance browser.
BMC Bioinformatics. 2017 Jan 6;18(1):20. doi: 10.1186/s12859-016-1436-4.
8
EPIC-CoGe: managing and analyzing genomic data.
Bioinformatics. 2018 Aug 1;34(15):2651-2653. doi: 10.1093/bioinformatics/bty106.
9
Navigating protected genomics data with UCSC Genome Browser in a Box.
Bioinformatics. 2015 Mar 1;31(5):764-6. doi: 10.1093/bioinformatics/btu712. Epub 2014 Oct 27.
10
Predicting the functional consequences of cancer-associated amino acid substitutions.
Bioinformatics. 2013 Jun 15;29(12):1504-10. doi: 10.1093/bioinformatics/btt182. Epub 2013 Apr 25.

引用本文的文献

1
Noncoding mutations in are associated with autism spectrum disorders.
iScience. 2025 Aug 5;28(9):113258. doi: 10.1016/j.isci.2025.113258. eCollection 2025 Sep 19.
4
6
Health risks and genetic architecture of objectively measured multidimensional sleep health.
Nat Commun. 2025 Jul 31;16(1):7026. doi: 10.1038/s41467-025-62338-0.
7
Perspective on recent developments and challenges in regulatory and systems genomics.
Bioinform Adv. 2025 May 9;5(1):vbaf106. doi: 10.1093/bioadv/vbaf106. eCollection 2025.
10
A Report of a Child with SEC31A-Related Neurodevelopmental Disorder.
Int J Mol Sci. 2025 May 30;26(11):5296. doi: 10.3390/ijms26115296.

本文引用的文献

2
HIPred: an integrative approach to predicting haploinsufficient genes.
Bioinformatics. 2017 Jun 15;33(12):1751-1757. doi: 10.1093/bioinformatics/btx028.
3
GAVIN: Gene-Aware Variant INterpretation for medical sequencing.
Genome Biol. 2017 Jan 16;18(1):6. doi: 10.1186/s13059-016-1141-7.
4
GTB - an online genome tolerance browser.
BMC Bioinformatics. 2017 Jan 6;18(1):20. doi: 10.1186/s12859-016-1436-4.
5
The performance of deleteriousness prediction scores for rare non-protein-changing single nucleotide variants in human genes.
J Med Genet. 2017 Feb;54(2):134-144. doi: 10.1136/jmedgenet-2016-104369. Epub 2016 Dec 20.
6
The Ensembl Variant Effect Predictor.
Genome Biol. 2016 Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4.
7
An integrative approach to predicting the functional effects of non-coding and coding sequence variation.
Bioinformatics. 2015 May 15;31(10):1536-43. doi: 10.1093/bioinformatics/btv009. Epub 2015 Jan 11.
8
DANN: a deep learning approach for annotating the pathogenicity of genetic variants.
Bioinformatics. 2015 Mar 1;31(5):761-3. doi: 10.1093/bioinformatics/btu703. Epub 2014 Oct 22.
9
A general framework for estimating the relative pathogenicity of human genetic variants.
Nat Genet. 2014 Mar;46(3):310-5. doi: 10.1038/ng.2892. Epub 2014 Feb 2.
10
ClinVar: public archive of relationships among sequence variation and human phenotype.
Nucleic Acids Res. 2014 Jan;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub 2013 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验