Suppr超能文献

Kmer-SSR:一种快速而全面的 SSR 搜索算法。

Kmer-SSR: a fast and exhaustive SSR search algorithm.

机构信息

Department of Biology, BYU, Provo, UT 84602, USA.

出版信息

Bioinformatics. 2017 Dec 15;33(24):3922-3928. doi: 10.1093/bioinformatics/btx538.

Abstract

MOTIVATION

One of the main challenges with bioinformatics software is that the size and complexity of datasets necessitate trading speed for accuracy, or completeness. To combat this problem of computational complexity, a plethora of heuristic algorithms have arisen that report a 'good enough' solution to biological questions. However, in instances such as Simple Sequence Repeats (SSRs), a 'good enough' solution may not accurately portray results in population genetics, phylogenetics and forensics, which require accurate SSRs to calculate intra- and inter-species interactions.

RESULTS

We present Kmer-SSR, which finds all SSRs faster than most heuristic SSR identification algorithms in a parallelized, easy-to-use manner. The exhaustive Kmer-SSR option has 100% precision and 100% recall and accurately identifies every SSR of any specified length. To identify more biologically pertinent SSRs, we also developed several filters that allow users to easily view a subset of SSRs based on user input. Kmer-SSR, coupled with the filter options, accurately and intuitively identifies SSRs quickly and in a more user-friendly manner than any other SSR identification algorithm.

AVAILABILITY AND IMPLEMENTATION

The source code is freely available on GitHub at https://github.com/ridgelab/Kmer-SSR.

CONTACT

perry.ridge@byu.edu.

摘要

动机

生物信息学软件面临的主要挑战之一是,数据集的大小和复杂性需要在速度和准确性或完整性之间进行权衡。为了解决计算复杂度的问题,出现了大量启发式算法,这些算法为生物问题提供了一个“足够好”的解决方案。然而,在简单序列重复(SSR)等情况下,“足够好”的解决方案可能无法准确描述群体遗传学、系统发生学和法医学中的结果,这些领域需要准确的 SSR 来计算种内和种间相互作用。

结果

我们提出了 Kmer-SSR,它以并行化、易于使用的方式比大多数启发式 SSR 识别算法更快地找到所有 SSR。详尽的 Kmer-SSR 选项具有 100%的精度和 100%的召回率,并且可以准确识别任何指定长度的每个 SSR。为了识别更具生物学意义的 SSR,我们还开发了几个过滤器,允许用户根据用户输入轻松查看 SSR 的子集。Kmer-SSR 与过滤器选项结合使用,可以比任何其他 SSR 识别算法更准确、直观地快速识别 SSR,并且更用户友好。

可用性和实现

源代码可在 GitHub 上免费获得,网址为 https://github.com/ridgelab/Kmer-SSR。

联系人

perry.ridge@byu.edu

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8525/5860095/c7444022a304/btx538f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验