Onorati Francesco, Regalia Giulia, Caborni Chiara, Migliorini Matteo, Bender Daniel, Poh Ming-Zher, Frazier Cherise, Kovitch Thropp Eliana, Mynatt Elizabeth D, Bidwell Jonathan, Mai Roberto, LaFrance W Curt, Blum Andrew S, Friedman Daniel, Loddenkemper Tobias, Mohammadpour-Touserkani Fatemeh, Reinsberger Claus, Tognetti Simone, Picard Rosalind W
Empatica, Milan, Italy.
Empatica, Cambridge, Massachusetts, U.S.A.
Epilepsia. 2017 Nov;58(11):1870-1879. doi: 10.1111/epi.13899. Epub 2017 Oct 4.
New devices are needed for monitoring seizures, especially those associated with sudden unexpected death in epilepsy (SUDEP). They must be unobtrusive and automated, and provide false alarm rates (FARs) bearable in everyday life. This study quantifies the performance of new multimodal wrist-worn convulsive seizure detectors.
Hand-annotated video-electroencephalographic seizure events were collected from 69 patients at six clinical sites. Three different wristbands were used to record electrodermal activity (EDA) and accelerometer (ACM) signals, obtaining 5,928 h of data, including 55 convulsive epileptic seizures (six focal tonic-clonic seizures and 49 focal to bilateral tonic-clonic seizures) from 22 patients. Recordings were analyzed offline to train and test two new machine learning classifiers and a published classifier based on EDA and ACM. Moreover, wristband data were analyzed to estimate seizure-motion duration and autonomic responses.
The two novel classifiers consistently outperformed the previous detector. The most efficient (Classifier III) yielded sensitivity of 94.55%, and an FAR of 0.2 events/day. No nocturnal seizures were missed. Most patients had <1 false alarm every 4 days, with an FAR below their seizure frequency. When increasing the sensitivity to 100% (no missed seizures), the FAR is up to 13 times lower than with the previous detector. Furthermore, all detections occurred before the seizure ended, providing reasonable latency (median = 29.3 s, range = 14.8-151 s). Automatically estimated seizure durations were correlated with true durations, enabling reliable annotations. Finally, EDA measurements confirmed the presence of postictal autonomic dysfunction, exhibiting a significant rise in 73% of the convulsive seizures.
The proposed multimodal wrist-worn convulsive seizure detectors provide seizure counts that are more accurate than previous automated detectors and typical patient self-reports, while maintaining a tolerable FAR for ambulatory monitoring. Furthermore, the multimodal system provides an objective description of motor behavior and autonomic dysfunction, aimed at enriching seizure characterization, with potential utility for SUDEP warning.
需要新的设备来监测癫痫发作,尤其是那些与癫痫猝死(SUDEP)相关的发作。这些设备必须不引人注意且自动化,并提供在日常生活中可承受的误报率(FAR)。本研究对新型多模态腕戴式惊厥发作探测器的性能进行了量化。
从六个临床地点的69名患者收集了经人工标注的视频脑电图癫痫发作事件。使用三种不同的腕带记录皮肤电活动(EDA)和加速度计(ACM)信号,获得了5928小时的数据,其中包括来自22名患者的55次惊厥性癫痫发作(6次局灶性强直阵挛发作和49次局灶性继发全面性强直阵挛发作)。对记录进行离线分析,以训练和测试两个新的机器学习分类器以及一个基于EDA和ACM的已发表分类器。此外,还对腕带数据进行了分析,以估计发作运动持续时间和自主反应。
两个新型分类器始终优于先前的探测器。效率最高的(分类器III)灵敏度为94.55%,误报率为0.2次/天。没有漏诊夜间发作。大多数患者每4天的误报次数少于1次,误报率低于其发作频率。当将灵敏度提高到100%(无漏诊发作)时,误报率比先前的探测器低至13倍。此外,所有检测均在发作结束前发生,提供了合理的潜伏期(中位数 = 29.3秒,范围 = 14.8 - 151秒)。自动估计的发作持续时间与实际持续时间相关,从而实现可靠的标注。最后,EDA测量证实了发作后自主神经功能障碍的存在,在73%的惊厥发作中表现出显著升高。
所提出的多模态腕戴式惊厥发作探测器提供的发作计数比以前的自动探测器和典型的患者自我报告更准确,同时在动态监测中保持可承受的误报率。此外,多模态系统提供了对运动行为和自主神经功能障碍的客观描述,旨在丰富发作特征,对SUDEP预警具有潜在效用。