Suppr超能文献

大规模自动睡眠分期

Large-Scale Automated Sleep Staging.

作者信息

Sun Haoqi, Jia Jian, Goparaju Balaji, Huang Guang-Bin, Sourina Olga, Bianchi Matt Travis, Westover M Brandon

机构信息

Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore.

Fraunhofer IDM @ NTU, Nanyang Technological University, 639798, Singapore.

出版信息

Sleep. 2017 Oct 1;40(10). doi: 10.1093/sleep/zsx139.

Abstract

STUDY OBJECTIVES

Automated sleep staging has been previously limited by a combination of clinical and physiological heterogeneity. Both factors are in principle addressable with large data sets that enable robust calibration. However, the impact of sample size remains uncertain. The objectives are to investigate the extent to which machine learning methods can approximate the performance of human scorers when supplied with sufficient training cases and to investigate how staging performance depends on the number of training patients, contextual information, model complexity, and imbalance between sleep stage proportions.

METHODS

A total of 102 features were extracted from six electroencephalography (EEG) channels in routine polysomnography. Two thousand nights were partitioned into equal (n = 1000) training and testing sets for validation. We used epoch-by-epoch Cohen's kappa statistics to measure the agreement between classifier output and human scorer according to American Academy of Sleep Medicine scoring criteria.

RESULTS

Epoch-by-epoch Cohen's kappa improved with increasing training EEG recordings until saturation occurred (n = ~300). The kappa value was further improved by accounting for contextual (temporal) information, increasing model complexity, and adjusting the model training procedure to account for the imbalance of stage proportions. The final kappa on the testing set was 0.68. Testing on more EEG recordings leads to kappa estimates with lower variance.

CONCLUSION

Training with a large data set enables automated sleep staging that compares favorably with human scorers. Because testing was performed on a large and heterogeneous data set, the performance estimate has low variance and is likely to generalize broadly.

摘要

研究目的

自动睡眠分期此前受到临床和生理异质性的限制。原则上,这两个因素都可以通过能够进行稳健校准的大数据集来解决。然而,样本量的影响仍不确定。目的是研究在提供足够的训练病例时,机器学习方法能够在多大程度上接近人类评分者的表现,并研究分期表现如何取决于训练患者的数量、背景信息、模型复杂性以及睡眠阶段比例之间的不平衡。

方法

从常规多导睡眠图的六个脑电图(EEG)通道中提取了总共102个特征。将两千个夜晚分成相等的(n = 1000)训练集和测试集进行验证。我们根据美国睡眠医学学会的评分标准,使用逐时段的科恩kappa统计量来衡量分类器输出与人类评分者之间的一致性。

结果

逐时段的科恩kappa随着训练EEG记录数量的增加而提高,直到出现饱和(n = ~300)。通过考虑背景(时间)信息、增加模型复杂性以及调整模型训练程序以考虑阶段比例的不平衡,kappa值进一步提高。测试集上的最终kappa为0.68。对更多EEG记录进行测试会导致kappa估计值的方差更低。

结论

使用大数据集进行训练能够实现与人类评分者相比具有优势的自动睡眠分期。由于测试是在一个大型且异质的数据集上进行的,性能估计的方差较低,并且可能具有广泛的通用性。

相似文献

1
Large-Scale Automated Sleep Staging.
Sleep. 2017 Oct 1;40(10). doi: 10.1093/sleep/zsx139.
3
Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters.
Sleep Med. 2013 Nov;14(11):1199-207. doi: 10.1016/j.sleep.2013.04.022. Epub 2013 Aug 16.
4
Sleep staging from single-channel EEG with multi-scale feature and contextual information.
Sleep Breath. 2019 Dec;23(4):1159-1167. doi: 10.1007/s11325-019-01789-4. Epub 2019 Mar 12.
7
Visual and automatic classification of the cyclic alternating pattern in electroencephalography during sleep.
Braz J Med Biol Res. 2019 Feb 25;52(3):e8059. doi: 10.1590/1414-431X20188059.
8
Computerized scoring of abnormal human sleep: a validation.
Clin Electroencephalogr. 1997 Apr;28(2):64-7. doi: 10.1177/155005949702800203.
9
Open-source logic-based automated sleep scoring software using electrophysiological recordings in rats.
J Neurosci Methods. 2009 Oct 30;184(1):10-8. doi: 10.1016/j.jneumeth.2009.07.009. Epub 2009 Jul 15.

引用本文的文献

1
[Research progress in electroencephalogram-based brain age prediction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):832-840. doi: 10.7507/1001-5515.202503043.
2
Ordinal Sleep Depth: A Data-Driven Continuous Measurement of Sleep Depth.
J Sleep Res. 2025 Apr 25:e70074. doi: 10.1111/jsr.70074.
5
Generalized sleep decoding with basal ganglia signals in multiple movement disorders.
NPJ Digit Med. 2024 May 10;7(1):122. doi: 10.1038/s41746-024-01115-7.
6
Somnotate: A probabilistic sleep stage classifier for studying vigilance state transitions.
PLoS Comput Biol. 2024 Jan 17;20(1):e1011793. doi: 10.1371/journal.pcbi.1011793. eCollection 2024 Jan.
7
Linking brain structure, cognition, and sleep: insights from clinical data.
Sleep. 2024 Feb 8;47(2). doi: 10.1093/sleep/zsad294.
8
Functional extreme learning machine.
Front Comput Neurosci. 2023 Jul 11;17:1209372. doi: 10.3389/fncom.2023.1209372. eCollection 2023.
9
Decoding information about cognitive health from the brainwaves of sleep.
Sci Rep. 2023 Jul 15;13(1):11448. doi: 10.1038/s41598-023-37128-7.
10
An accessible and versatile deep learning-based sleep stage classifier.
Front Neuroinform. 2023 Mar 2;17:1086634. doi: 10.3389/fninf.2023.1086634. eCollection 2023.

本文引用的文献

1
Performance of a New Portable Wireless Sleep Monitor.
J Clin Sleep Med. 2017 Feb 15;13(2):245-258. doi: 10.5664/jcsm.6456.
2
A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features.
J Neurosci Methods. 2016 Sep 15;271:107-18. doi: 10.1016/j.jneumeth.2016.07.012. Epub 2016 Jul 22.
3
Minimizing Interrater Variability in Staging Sleep by Use of Computer-Derived Features.
J Clin Sleep Med. 2016 Oct 15;12(10):1347-1356. doi: 10.5664/jcsm.6186.
5
Accuracy of Automatic Polysomnography Scoring Using Frontal Electrodes.
J Clin Sleep Med. 2016 May 15;12(5):735-46. doi: 10.5664/jcsm.5808.
6
Evaluation of an automated single-channel sleep staging algorithm.
Nat Sci Sleep. 2015 Sep 18;7:101-11. doi: 10.2147/NSS.S77888. eCollection 2015.
7
Utility of Technologist Editing of Polysomnography Scoring Performed by a Validated Automatic System.
Ann Am Thorac Soc. 2015 Aug;12(8):1206-18. doi: 10.1513/AnnalsATS.201411-512OC.
8
Computer-Assisted Automated Scoring of Polysomnograms Using the Somnolyzer System.
Sleep. 2015 Oct 1;38(10):1555-66. doi: 10.5665/sleep.5046.
9
Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.
J Neurosci Methods. 2015 Jul 30;250:94-105. doi: 10.1016/j.jneumeth.2015.01.022. Epub 2015 Jan 25.
10
Odds ratio product of sleep EEG as a continuous measure of sleep state.
Sleep. 2015 Apr 1;38(4):641-54. doi: 10.5665/sleep.4588.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验