Ochoa Jessica L, Sanchez Laura M, Koo Byoung-Mo, Doherty Jennifer S, Rajendram Manohary, Huang Kerwyn Casey, Gross Carol A, Linington Roger G
Department of Chemistry and Biochemistry, University of California Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States.
Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States.
ACS Infect Dis. 2018 Jan 12;4(1):59-67. doi: 10.1021/acsinfecdis.7b00105. Epub 2017 Oct 18.
The recent explosion of research on the microbiota has highlighted the important interplay between commensal microorganisms and the health of their cognate hosts. Metabolites isolated from commensal bacteria have been demonstrated to possess a range of antimicrobial activities, and it is widely believed that some of these metabolites modulate host behavior, affecting predisposition to disease and pathogen invasion. Our access to the local marine mammal stranding network and previous successes in mining the fish microbiota poised us to test the hypothesis that the marine mammal microbiota is a novel source of commensal bacteria-produced bioactive metabolites. Examination of intestinal contents from five marine mammals led to the identification of a Micromonospora strain with potent and selective activity against a panel of Gram-positive pathogens and no discernible human cytotoxicity. Compound isolation afforded a new complex glycosylated polyketide, phocoenamicin, with potent activity against the intestinal pathogen Clostridium difficile, an organism challenging to treat in hospital settings. Use of our activity-profiling platform, BioMAP, clustered this metabolite with other known ionophore antibiotics. Fluorescence imaging and flow cytometry confirmed that phocoenamicin is capable of shifting membrane potential without damaging membrane integrity. Thus, exploration of gut microbiota in hosts from diverse environments can serve as a powerful strategy for the discovery of novel antibiotics against human pathogens.
近期微生物群研究的激增凸显了共生微生物与其宿主健康之间的重要相互作用。已证明从共生细菌中分离出的代谢产物具有一系列抗菌活性,并且人们普遍认为其中一些代谢产物会调节宿主行为,影响疾病易感性和病原体入侵。我们通过当地海洋哺乳动物搁浅网络以及此前在挖掘鱼类微生物群方面的成功经验,有条件去检验这一假设:海洋哺乳动物微生物群是共生细菌产生的生物活性代谢产物的新来源。对五只海洋哺乳动物的肠道内容物进行检查后,鉴定出了一株小单孢菌,它对一组革兰氏阳性病原体具有强效且选择性的活性,并且对人类没有明显的细胞毒性。化合物分离得到了一种新的复杂糖基化聚酮化合物——鼠海豚霉素,它对肠道病原体艰难梭菌具有强效活性,而艰难梭菌是医院环境中难以治疗的一种微生物。利用我们的活性分析平台BioMAP,将这种代谢产物与其他已知的离子载体抗生素归为一类。荧光成像和流式细胞术证实,鼠海豚霉素能够改变膜电位而不破坏膜的完整性。因此,探索来自不同环境宿主的肠道微生物群可作为发现针对人类病原体的新型抗生素的有力策略。