Suppr超能文献

翻译后修饰作为顶复门生物的关键调节因子:蛋白质组学研究的见解

Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies.

作者信息

Yakubu Rama R, Weiss Louis M, Silmon de Monerri Natalie C

机构信息

Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.

Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.

出版信息

Mol Microbiol. 2018 Jan;107(1):1-23. doi: 10.1111/mmi.13867. Epub 2017 Nov 28.

Abstract

Parasites of the Apicomplexa phylum, such as Plasmodium spp. and Toxoplasma gondii, undergo complex life cycles involving multiple stages with distinct biology and morphologies. Post-translational modifications (PTMs), such as phosphorylation, acetylation and glycosylation, regulate numerous cellular processes, playing a role in every aspect of cell biology. PTMs can occur on proteins at any time in their lifespan and through alterations of target protein activity, localization, protein-protein interactions, among other functions, dramatically increase proteome diversity and complexity. In addition, PTMs can be induced or removed on changes in cellular environment and state. Thus, PTMs are likely to be key regulators of developmental transitions, biology and pathogenesis of apicomplexan parasites. In this review we examine the roles of PTMs in both parasite-specific and conserved eukaryotic processes, and the potential crosstalk between PTMs, that together regulate the intricate lives of these protozoa.

摘要

顶复门寄生虫,如疟原虫属和刚地弓形虫,经历复杂的生命周期,涉及多个具有不同生物学特性和形态的阶段。翻译后修饰(PTM),如磷酸化、乙酰化和糖基化,调节众多细胞过程,在细胞生物学的各个方面发挥作用。PTM可在蛋白质寿命的任何时候发生,通过改变靶蛋白活性、定位、蛋白质-蛋白质相互作用等功能,显著增加蛋白质组的多样性和复杂性。此外,PTM可因细胞环境和状态的变化而被诱导或去除。因此,PTM可能是顶复门寄生虫发育转变、生物学特性和致病机制的关键调节因子。在本综述中,我们研究了PTM在寄生虫特异性和保守的真核生物过程中的作用,以及PTM之间潜在的相互作用,它们共同调节这些原生动物的复杂生命过程。

相似文献

1
Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies.
Mol Microbiol. 2018 Jan;107(1):1-23. doi: 10.1111/mmi.13867. Epub 2017 Nov 28.
3
Determination of protein subcellular localization in apicomplexan parasites.
Trends Parasitol. 2012 Dec;28(12):546-54. doi: 10.1016/j.pt.2012.08.008. Epub 2012 Sep 17.
4
The Ubiquitin Proteome of Toxoplasma gondii Reveals Roles for Protein Ubiquitination in Cell-Cycle Transitions.
Cell Host Microbe. 2015 Nov 11;18(5):621-33. doi: 10.1016/j.chom.2015.10.014.
6
Translational Control in the Latency of Apicomplexan Parasites.
Trends Parasitol. 2017 Dec;33(12):947-960. doi: 10.1016/j.pt.2017.08.006. Epub 2017 Sep 20.
7
Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle.
Int J Mol Sci. 2024 Jun 2;25(11):6145. doi: 10.3390/ijms25116145.
8
Translational control in Plasmodium and toxoplasma parasites.
Eukaryot Cell. 2013 Feb;12(2):161-7. doi: 10.1128/EC.00296-12. Epub 2012 Dec 14.
9
Exploring the diversity of plant proteome.
J Integr Plant Biol. 2021 Jul;63(7):1197-1210. doi: 10.1111/jipb.13087. Epub 2021 Apr 1.
10
Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study.
Amino Acids. 2011 Mar;40(3):847-56. doi: 10.1007/s00726-010-0702-4. Epub 2010 Jul 27.

引用本文的文献

2
Biochemistry of Heat Shock Proteins From Human Intracellular Protozoan Parasites as Diagnostic and Therapeutic Biomarkers.
Biochemistry. 2025 Jun 17;64(12):2529-2543. doi: 10.1021/acs.biochem.5c00120. Epub 2025 Jun 2.
3
Anti-Inflammatory Effects of Helminth-Derived Products: Potential Applications and Challenges in Diabetes Mellitus Management.
J Inflamm Res. 2024 Dec 28;17:11789-11812. doi: 10.2147/JIR.S493374. eCollection 2024.
4
Design and evaluation of vaccines for the control of the etiological agent of East Coast fever.
Parasit Vectors. 2024 Nov 20;17(1):479. doi: 10.1186/s13071-024-06517-w.
5
Global profiling of protein S-palmitoylation in the second-generation merozoites of Eimeria tenella.
Parasitol Res. 2024 Apr 22;123(4):190. doi: 10.1007/s00436-024-08204-2.
9
TgKDAC4: A Unique Deacetylase of ' Apicoplast.
Microorganisms. 2023 Jun 12;11(6):1558. doi: 10.3390/microorganisms11061558.
10
FtsZ phosphorylation brings about growth arrest upon DNA damage in .
FASEB Bioadv. 2022 Oct 31;5(1):27-42. doi: 10.1096/fba.2022-00082. eCollection 2023 Jan.

本文引用的文献

1
Characterization of a cytoplasmic glucosyltransferase that extends the core trisaccharide of the Skp1 E3 ubiquitin ligase subunit.
J Biol Chem. 2017 Nov 10;292(45):18644-18659. doi: 10.1074/jbc.M117.809301. Epub 2017 Sep 19.
3
Lipidated proteins: Spotlight on protein-membrane binding interfaces.
Prog Biophys Mol Biol. 2017 Sep;128:74-84. doi: 10.1016/j.pbiomolbio.2017.01.002. Epub 2017 Feb 3.
7
Proteomic Identification and Analysis of Arginine-Methylated Proteins of Plasmodium falciparum at Asexual Blood Stages.
J Proteome Res. 2017 Feb 3;16(2):368-383. doi: 10.1021/acs.jproteome.5b01052. Epub 2017 Jan 3.
8
Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist.
Structure. 2017 Jan 3;25(1):16-26. doi: 10.1016/j.str.2016.10.011. Epub 2016 Nov 23.
9
The apicoplast: now you see it, now you don't.
Int J Parasitol. 2017 Feb;47(2-3):137-144. doi: 10.1016/j.ijpara.2016.08.005. Epub 2016 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验