Suppr超能文献

用于抑郁症检测的面部几何形状和语音分析。

Facial geometry and speech analysis for depression detection.

作者信息

Pampouchidou A, Simantiraki O, Vazakopoulou C-M, Chatzaki C, Pediaditis M, Maridaki A, Marias K, Simos P, Yang F, Meriaudeau F, Tsiknakis M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1433-1436. doi: 10.1109/EMBC.2017.8037103.

Abstract

Depression is one of the most prevalent mental disorders, burdening many people world-wide. A system with the potential of serving as a decision support system is proposed, based on novel features extracted from facial expression geometry and speech, by interpreting non-verbal manifestations of depression. The proposed system has been tested both in gender independent and gender based modes, and with different fusion methods. The algorithms were evaluated for several combinations of parameters and classification schemes, on the dataset provided by the Audio/Visual Emotion Challenge of 2013 and 2014. The proposed framework achieved a precision of 94.8% for detecting persons achieving high scores on a self-report scale of depressive symptomatology. Optimal system performance was obtained using a nearest neighbour classifier on the decision fusion of geometrical features in the gender independent mode, and audio based features in the gender based mode; single visual and audio decisions were combined with the OR binary operation.

摘要

抑郁症是最常见的精神障碍之一,困扰着全球许多人。基于从面部表情几何特征和语音中提取的新特征,通过解读抑郁症的非语言表现,提出了一种有可能用作决策支持系统的系统。所提出的系统已在独立于性别的模式和基于性别的模式下进行了测试,并采用了不同的融合方法。在2013年和2014年音频/视觉情感挑战赛提供的数据集上,针对参数和分类方案的几种组合对算法进行了评估。所提出的框架在检测抑郁症状自评量表得分高的人时,精度达到了94.8%。在独立于性别的模式下,对几何特征的决策融合使用最近邻分类器,在基于性别的模式下对基于音频的特征使用最近邻分类器,可获得最佳系统性能;单个视觉和音频决策通过“或”二元运算进行组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验