Rotstein Horacio G
Federated Department of Biological Sciences, Rutgers University and New Jersey Institute of Technology, Newark, NJ, 07102, USA.
Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
J Comput Neurosci. 2017 Dec;43(3):243-271. doi: 10.1007/s10827-017-0661-9. Epub 2017 Oct 24.
The generation of spiking resonances in neurons (preferred spiking responses to oscillatory inputs) requires the interplay of the intrinsic ionic currents that operate at the subthreshold voltage level and the spiking mechanisms. Combinations of the same types of ionic currents in different parameter regimes may give rise to different types of nonlinearities in the voltage equation (e.g., parabolic- and cubic-like), generating subthreshold (membrane potential) oscillations patterns with different properties. These nonlinearities are not apparent in the model equations, but can be uncovered by plotting the voltage nullclines in the phase-plane diagram. We investigate the spiking resonant properties of conductance-based models that are biophysically equivalent at the subthreshold level (same ionic currents), but dynamically different (parabolic- and cubic-like voltage nullclines). As a case study we consider a model having a persistent sodium and a hyperpolarization-activated (h-) currents, which exhibits subthreshold resonance in the theta frequency band. We unfold the concept of spiking resonance into evoked and output spiking resonance. The former focuses on the input frequencies that are able to generate spikes, while the latter focuses on the output spiking frequencies regardless of the input frequency that generated these spikes. A cell can exhibit one or both types of resonances. We also measure spiking phasonance, which is an extension of subthreshold phasonance (zero-phase-shift response to oscillatory inputs) to the spiking regime. The subthreshold resonant properties of both types of models are communicated to the spiking regime for low enough input amplitudes as the voltage response for the subthreshold resonant frequency band raises above threshold. For higher input amplitudes evoked spiking resonance is no longer present in these models, but output spiking resonance is present primarily in the parabolic-like model due to a cycle skipping mechanism (involving mixed-mode oscillations), while the cubic-like model shows a better 1:1 entrainment. We use dynamical systems tools to explain the underlying mechanisms and the mechanistic differences between the resonance types. Our results demonstrate that the effective time scales that operate at the subthreshold regime to generate intrinsic subthreshold oscillations, mixed-mode oscillations and subthreshold resonance do not necessarily determine the existence of a preferred spiking response to oscillatory inputs in the same frequency band. The results discussed in this paper highlight both the complexity of the suprathreshold responses to oscillatory inputs in neurons having resonant and amplifying currents with different time scales and the fact that the identity of the participating ionic currents is not enough to predict the resulting patterns, but additional dynamic information, captured by the geometric properties of the phase-space diagram, is needed.
神经元中尖峰共振的产生(对振荡输入的偏好性尖峰反应)需要在阈下电压水平起作用的内在离子电流与尖峰机制之间的相互作用。不同参数范围内相同类型离子电流的组合可能会在电压方程中产生不同类型的非线性(例如,类似抛物线和立方的),从而产生具有不同特性的阈下(膜电位)振荡模式。这些非线性在模型方程中并不明显,但可以通过在相平面图中绘制电压零倾线来揭示。我们研究了基于电导的模型的尖峰共振特性,这些模型在阈下水平(相同离子电流)具有生物物理等效性,但动态不同(类似抛物线和立方的电压零倾线)。作为一个案例研究,我们考虑一个具有持续性钠电流和超极化激活(h -)电流的模型,该模型在θ频段表现出阈下共振。我们将尖峰共振的概念扩展为诱发尖峰共振和输出尖峰共振。前者关注能够产生尖峰的输入频率,而后者关注输出尖峰频率,而不考虑产生这些尖峰的输入频率。一个细胞可以表现出一种或两种类型的共振。我们还测量了尖峰相位共振,它是阈下相位共振(对振荡输入的零相移响应)向尖峰状态的扩展。对于足够低的输入幅度,当阈下共振频段的电压响应升高到阈值以上时,两种模型的阈下共振特性都会传递到尖峰状态。对于更高的输入幅度,这些模型中不再存在诱发尖峰共振,但输出尖峰共振主要存在于类似抛物线的模型中,这是由于一种周期跳跃机制(涉及混合模式振荡),而类似立方的模型表现出更好的1:1同步。我们使用动力系统工具来解释共振类型之间的潜在机制和机制差异。我们的结果表明,在阈下状态起作用以产生内在阈下振荡、混合模式振荡和阈下共振的有效时间尺度不一定决定在同一频段对振荡输入是否存在偏好性尖峰反应。本文讨论的结果既突出了具有不同时间尺度的共振和放大电流的神经元对振荡输入的阈上反应的复杂性,也突出了参与的离子电流的特性不足以预测所产生的模式这一事实,还需要由相空间图的几何特性捕获的额外动态信息。