Suppr超能文献

无序蛋白质的相行为是液体细胞器低密度和高通透性的基础。

Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.

Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA.

出版信息

Nat Chem. 2017 Nov;9(11):1118-1125. doi: 10.1038/nchem.2803. Epub 2017 Jun 26.

Abstract

Many intracellular membraneless organelles form via phase separation of intrinsically disordered proteins (IDPs) or regions (IDRs). These include the Caenorhabditis elegans protein LAF-1, which forms P granule-like droplets in vitro. However, the role of protein disorder in phase separation and the macromolecular organization within droplets remain elusive. Here, we utilize a novel technique, ultrafast-scanning fluorescence correlation spectroscopy, to measure the molecular interactions and full coexistence curves (binodals), which quantify the protein concentration within LAF-1 droplets. The binodals of LAF-1 and its IDR display a number of unusual features, including 'high concentration' binodal arms that correspond to remarkably dilute droplets. We find that LAF-1 and other in vitro and intracellular droplets are characterized by an effective mesh size of ∼3-8 nm, which determines the size scale at which droplet properties impact molecular diffusion and permeability. These findings reveal how specific IDPs can phase separate to form permeable, low-density (semi-dilute) liquids, whose structural features are likely to strongly impact biological function.

摘要

许多细胞内无膜细胞器通过内在无序蛋白质(IDP)或区域(IDR)的相分离形成。这些包括秀丽隐杆线虫蛋白 LAF-1,它在体外形成 P 颗粒样液滴。然而,蛋白质无序在相分离和液滴内的大分子组织中的作用仍然难以捉摸。在这里,我们利用一种新的技术,超快扫描荧光相关光谱法,来测量分子相互作用和完整的共存曲线(双结点),这定量了 LAF-1 液滴中的蛋白质浓度。LAF-1 及其 IDR 的双结点显示出许多不寻常的特征,包括与非常稀有的液滴相对应的“高浓度”双结点臂。我们发现 LAF-1 和其他体外和细胞内液滴的特征是有效网格尺寸约为 3-8nm,这决定了液滴特性影响分子扩散和渗透性的大小尺度。这些发现揭示了特定的 IDP 如何相分离形成可渗透的、低密度(半稀)液体,其结构特征可能强烈影响生物学功能。

相似文献

1
Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles.
Nat Chem. 2017 Nov;9(11):1118-1125. doi: 10.1038/nchem.2803. Epub 2017 Jun 26.
3
Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble.
PLoS Comput Biol. 2021 Mar 8;17(3):e1008672. doi: 10.1371/journal.pcbi.1008672. eCollection 2021 Mar.
4
The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7189-94. doi: 10.1073/pnas.1504822112. Epub 2015 May 26.
5
Methods and Strategies to Quantify Phase Separation of Disordered Proteins.
Methods Enzymol. 2018;611:31-50. doi: 10.1016/bs.mie.2018.09.037. Epub 2018 Nov 3.
6
Molecular principles of recruitment and dynamics of guest proteins in liquid droplets.
Sci Rep. 2021 Sep 29;11(1):19323. doi: 10.1038/s41598-021-98955-0.
7
Membraneless organelles: P granules in Caenorhabditis elegans.
Traffic. 2019 Jun;20(6):373-379. doi: 10.1111/tra.12644. Epub 2019 Apr 11.
8
Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
Annu Rev Phys Chem. 2020 Apr 20;71:53-75. doi: 10.1146/annurev-physchem-071819-113553.
9
Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11421-11431. doi: 10.1073/pnas.2000223117. Epub 2020 May 11.
10
Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells.
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):11028-11036. doi: 10.1002/anie.202001868. Epub 2020 Apr 28.

引用本文的文献

2
The rheology and interfacial properties of biomolecular condensates.
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.
4
Oncogenic stress response mechanisms as new therapeutic targets in cancer treatment: A review.
Medicine (Baltimore). 2025 Jun 13;104(24):e42857. doi: 10.1097/MD.0000000000042857.
5
Biomolecular condensates-Prerequisites for anhydrobiosis?
Protein Sci. 2025 Jul;34(7):e70192. doi: 10.1002/pro.70192.
6
Ballistic diffusion fronts in biomolecular condensates.
Nat Nanotechnol. 2025 Jun 6. doi: 10.1038/s41565-025-01941-0.
8
Dissecting Rate-Limiting Processes in Biomolecular Condensate Exchange Dynamics.
bioRxiv. 2025 May 22:2025.05.16.654578. doi: 10.1101/2025.05.16.654578.
9
Emergent mechanics of a networked multivalent protein condensate.
Nat Commun. 2025 Jun 5;16(1):5237. doi: 10.1038/s41467-025-60345-9.
10
Of condensates and coats - reciprocal regulation of clathrin assembly and the growth of protein networks.
bioRxiv. 2025 May 14:2025.05.13.653742. doi: 10.1101/2025.05.13.653742.

本文引用的文献

1
Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity.
Nat Chem. 2017 Jun;9(6):509-515. doi: 10.1038/nchem.2715. Epub 2017 Jan 30.
2
Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism.
Cell. 2016 Sep 8;166(6):1572-1584.e16. doi: 10.1016/j.cell.2016.08.006. Epub 2016 Sep 1.
4
Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters.
Nat Chem. 2016 Jun;8(6):569-75. doi: 10.1038/nchem.2519. Epub 2016 May 16.
5
Coexisting Liquid Phases Underlie Nucleolar Subcompartments.
Cell. 2016 Jun 16;165(7):1686-1697. doi: 10.1016/j.cell.2016.04.047. Epub 2016 May 19.
6
Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles.
Nat Chem. 2016 Feb;8(2):129-37. doi: 10.1038/nchem.2414. Epub 2015 Dec 21.
8
RNA Controls PolyQ Protein Phase Transitions.
Mol Cell. 2015 Oct 15;60(2):220-30. doi: 10.1016/j.molcel.2015.09.017.
9
Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.
Mol Cell. 2015 Oct 15;60(2):208-19. doi: 10.1016/j.molcel.2015.08.018. Epub 2015 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验