Suppr超能文献

在蛋白质结构预测技术关键评估(CASP)12中对模型优化类别进行评估。

Assessment of the model refinement category in CASP12.

作者信息

Hovan Ladislav, Oleinikovas Vladimiras, Yalinca Havva, Kryshtafovych Andriy, Saladino Giorgio, Gervasio Francesco Luigi

机构信息

Department of Chemistry, University College London, WC1E 6BT, United Kingdom.

Genome Center, University of California, Davis, California, 95616.

出版信息

Proteins. 2018 Mar;86 Suppl 1(Suppl 1):152-167. doi: 10.1002/prot.25409. Epub 2017 Nov 29.

Abstract

We here report on the assessment of the model refinement predictions submitted to the 12th Experiment on the Critical Assessment of Protein Structure Prediction (CASP12). This is the fifth refinement experiment since CASP8 (2008) and, as with the previous experiments, the predictors were invited to refine selected server models received in the regular (nonrefinement) stage of the CASP experiment. We assessed the submitted models using a combination of standard CASP measures. The coefficients for the linear combination of Z-scores (the CASP12 score) have been obtained by a machine learning algorithm trained on the results of visual inspection. We identified eight groups that improve both the backbone conformation and the side chain positioning for the majority of targets. Albeit the top methods adopted distinctively different approaches, their overall performance was almost indistinguishable, with each of them excelling in different scores or target subsets. What is more, there were a few novel approaches that, while doing worse than average in most cases, provided the best refinements for a few targets, showing significant latitude for further innovation in the field.

摘要

我们在此报告对提交至第十二届蛋白质结构预测关键评估实验(CASP12)的模型优化预测结果的评估。这是自2008年CASP8以来的第五次优化实验,与之前的实验一样,预测者被邀请对在CASP实验常规(非优化)阶段收到的选定服务器模型进行优化。我们使用标准CASP指标的组合来评估提交的模型。Z分数线性组合(CASP12分数)的系数是通过基于视觉检查结果训练的机器学习算法获得的。我们识别出八组方法,它们对大多数目标的主链构象和侧链定位都有改善。尽管顶级方法采用了截然不同的方法,但其总体性能几乎难以区分,每种方法在不同的分数或目标子集中表现出色。此外,有一些新颖的方法,虽然在大多数情况下表现不如平均水平,但对少数目标提供了最佳的优化结果,显示出该领域进一步创新的巨大空间。

相似文献

1
Assessment of the model refinement category in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):152-167. doi: 10.1002/prot.25409. Epub 2017 Nov 29.
2
Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):189-201. doi: 10.1002/prot.25373. Epub 2017 Sep 1.
3
Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):51-66. doi: 10.1002/prot.25407. Epub 2017 Nov 7.
4
Protein structure modeling and refinement by global optimization in CASP12.
Proteins. 2018 Mar;86 Suppl 1:122-135. doi: 10.1002/prot.25426. Epub 2017 Dec 5.
5
Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016).
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):27-50. doi: 10.1002/prot.25392. Epub 2017 Oct 16.
6
Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):84-96. doi: 10.1002/prot.25405. Epub 2017 Oct 31.
7
Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):136-151. doi: 10.1002/prot.25414. Epub 2017 Nov 14.
8
Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods.
Proteins. 2018 Mar;86 Suppl 1:97-112. doi: 10.1002/prot.25423. Epub 2017 Nov 29.

引用本文的文献

1
Protein Retrieval via Integrative Molecular Ensembles (PRIME) through Extended Similarity Indices.
J Chem Theory Comput. 2024 Jul 23;20(14):6303-6315. doi: 10.1021/acs.jctc.4c00362. Epub 2024 Jul 8.
2
Structure-conditioned amino-acid couplings: How contact geometry affects pairwise sequence preferences.
Protein Sci. 2022 Apr;31(4):900-917. doi: 10.1002/pro.4280. Epub 2022 Feb 15.
3
Modeling SARS-CoV-2 proteins in the CASP-commons experiment.
Proteins. 2021 Dec;89(12):1987-1996. doi: 10.1002/prot.26231. Epub 2021 Oct 5.
4
Evaluation of model refinement in CASP14.
Proteins. 2021 Dec;89(12):1852-1869. doi: 10.1002/prot.26185. Epub 2021 Jul 29.
5
Physics-based protein structure refinement in the era of artificial intelligence.
Proteins. 2021 Dec;89(12):1870-1887. doi: 10.1002/prot.26161. Epub 2021 Jun 29.
6
Conservation of binding properties in protein models.
Comput Struct Biotechnol J. 2021 Apr 25;19:2549-2566. doi: 10.1016/j.csbj.2021.04.048. eCollection 2021.
7
Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models?
PLoS Comput Biol. 2021 May 13;17(5):e1008936. doi: 10.1371/journal.pcbi.1008936. eCollection 2021 May.
9
Improved Sampling Strategies for Protein Model Refinement Based on Molecular Dynamics Simulation.
J Chem Theory Comput. 2021 Mar 9;17(3):1931-1943. doi: 10.1021/acs.jctc.0c01238. Epub 2021 Feb 9.
10
Computational reconstruction of atomistic protein structures from coarse-grained models.
Comput Struct Biotechnol J. 2019 Dec 26;18:162-176. doi: 10.1016/j.csbj.2019.12.007. eCollection 2020.

本文引用的文献

2
What makes it difficult to refine protein models further via molecular dynamics simulations?
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):177-188. doi: 10.1002/prot.25393. Epub 2017 Oct 16.
3
Protein structure prediction using Rosetta in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):113-121. doi: 10.1002/prot.25390. Epub 2017 Oct 8.
4
A Simple and Efficient Protein Structure Refinement Method.
J Chem Theory Comput. 2017 Oct 10;13(10):5146-5162. doi: 10.1021/acs.jctc.7b00470. Epub 2017 Sep 14.
5
CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
Nat Methods. 2017 Jan;14(1):71-73. doi: 10.1038/nmeth.4067. Epub 2016 Nov 7.
6
Assessment of refinement of template-based models in CASP11.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):260-81. doi: 10.1002/prot.25048. Epub 2016 Jun 15.
7
Demonstrating an Order-of-Magnitude Sampling Enhancement in Molecular Dynamics Simulations of Complex Protein Systems.
J Chem Theory Comput. 2016 Mar 8;12(3):1360-7. doi: 10.1021/acs.jctc.5b00913. Epub 2016 Feb 24.
8
CASP11 statistics and the prediction center evaluation system.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):15-9. doi: 10.1002/prot.25005. Epub 2016 Mar 9.
9
Advances in free-energy-based simulations of protein folding and ligand binding.
Curr Opin Struct Biol. 2016 Feb;36:25-31. doi: 10.1016/j.sbi.2015.12.002. Epub 2016 Jan 7.
10
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验