Suppr超能文献

丙酮酸节点的可塑性调节多种口腔链球菌的过氧化氢产生和耐酸性。

Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

机构信息

Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon, USA.

The State Key Laboratory of Oral Diseases and the National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

出版信息

Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.01697-17. Print 2018 Jan 15.

Abstract

Commensal and are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of HO, which is crucial for inhibiting competing biofilm members, especially the cariogenic species HO production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on HO production by and HO production was not found to be affected by moderate changes in environmental pH, whereas HO production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating HO or lactic acid production, revealed increased lactic acid levels for at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of at low pH and seems to constitute part of the acid tolerance response of Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of HO Oral biofilms are subject to frequent and dramatic changes in pH. and can compete with caries- and periodontitis-associated pathogens by generating HO Therefore, it is crucial to understand how and adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival, while others maintain their HO production at a constant level. The differential control of HO production provides important insights into the role of environmental conditions for growth competition of the oral flora.

摘要

共生菌和是先驱口腔生物膜定植者。两者的特征都是依赖 SpxB 产生 HO,这对于抑制竞争生物膜成员,特别是致龋物种,至关重要。HO 的产生强烈受到环境条件的影响,但已知的机制很少。牙菌斑 pH 值是决定牙菌斑生态和最终口腔健康状况的关键参数之一。因此,本研究的目的是表征环境 pH 值对和 HO 产生的影响。HO 的产生未发现受到环境 pH 值适度变化的影响,而在较低 pH 值下,HO 的产生明显下降。对调节 HO 或乳酸产生的中心代谢开关丙酮酸节点的进一步研究表明,在 pH 值为 6 时,产生的乳酸水平增加。在 pH 值为 6 时偏向产生乳酸导致在低 pH 值下共生菌的生存能力显著提高,并且似乎构成共生菌酸耐受反应的一部分。对 pH 值的不同响应同样影响其他口腔链球菌种,表明观察到的结果是将环境 pH 值、中心代谢和产生拮抗量 HO 的能力联系起来的更大现象的一部分。口腔生物膜经常受到 pH 值的频繁和剧烈变化的影响。和可以通过产生 HO 来与龋齿和牙周炎相关病原体竞争。因此,了解和如何适应低 pH 值并在酸应激下保持竞争力至关重要。本研究提供的证据表明,某些口腔细菌通过调整其代谢产物以有利于产生乳酸来响应环境 pH 值变化,从而增加其酸生存能力,而其他细菌则保持其 HO 产生水平不变。HO 产生的差异控制为环境条件对口腔菌群生长竞争的作用提供了重要的见解。

相似文献

1
Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.01697-17. Print 2018 Jan 15.
2
Effects of Antimicrobial Peptide GH12 on the Cariogenic Properties and Composition of a Cariogenic Multispecies Biofilm.
Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.01423-18. Print 2018 Dec 15.
3
Pyruvate secretion by oral streptococci modulates hydrogen peroxide dependent antagonism.
ISME J. 2020 May;14(5):1074-1088. doi: 10.1038/s41396-020-0592-8. Epub 2020 Jan 27.
4
In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm.
Mol Oral Microbiol. 2018 Apr;33(2):168-180. doi: 10.1111/omi.12209. Epub 2018 Feb 1.
5
Distinct Regulatory Role of Carbon Catabolite Protein A (CcpA) in Oral Streptococcal Expression.
J Bacteriol. 2018 Mar 26;200(8). doi: 10.1128/JB.00619-17. Print 2018 Apr 15.
7
Glycerol metabolism contributes to competition by oral streptococci through production of hydrogen peroxide.
J Bacteriol. 2024 Sep 19;206(9):e0022724. doi: 10.1128/jb.00227-24. Epub 2024 Aug 22.
8
Magnesium-Dependent Promotion of HO Production Increases Ecological Competitiveness of Oral Commensal Streptococci.
J Dent Res. 2020 Jul;99(7):847-854. doi: 10.1177/0022034520912181. Epub 2020 Mar 20.
9
10
Diversity in Antagonistic Interactions between Commensal Oral Streptococci and Streptococcus mutans.
Caries Res. 2018;52(1-2):88-101. doi: 10.1159/000479091. Epub 2017 Dec 20.

引用本文的文献

1
Pyruvate formate lyase regulates fermentation metabolism and virulence of .
Virulence. 2025 Dec;16(1):2467156. doi: 10.1080/21505594.2025.2467156. Epub 2025 Feb 20.
2
The role of salivary metabolomics in chronic periodontitis: bridging oral and systemic diseases.
Metabolomics. 2025 Feb 7;21(1):24. doi: 10.1007/s11306-024-02220-0.
3
Anti-Infection of Oral Microorganisms from Herbal Medicine of Ruiz & Pav.
Drug Des Devel Ther. 2024 Jun 25;18:2531-2553. doi: 10.2147/DDDT.S453375. eCollection 2024.
4
Ribosomal-processing cysteine protease homolog modulates glucan production and interkingdom interactions.
J Bacteriol. 2024 Jul 25;206(7):e0010424. doi: 10.1128/jb.00104-24. Epub 2024 Jun 20.
6
Anticariogenic Activity of Celastrol and Its Enhancement of Streptococcal Antagonism in Multispecies Biofilm.
Antibiotics (Basel). 2023 Jul 28;12(8):1245. doi: 10.3390/antibiotics12081245.
10
Manganese transport by Streptococcus sanguinis in acidic conditions and its impact on growth in vitro and in vivo.
Mol Microbiol. 2022 Feb;117(2):375-393. doi: 10.1111/mmi.14854. Epub 2021 Dec 18.

本文引用的文献

1
Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment.
J Dent Res. 2017 Jul;96(7):733-740. doi: 10.1177/0022034517701902. Epub 2017 Apr 6.
2
Health-Associated Niche Inhabitants as Oral Probiotics: The Case of .
Front Microbiol. 2017 Mar 10;8:379. doi: 10.3389/fmicb.2017.00379. eCollection 2017.
3
Role of microbial communities in the pathogenesis of periodontal diseases and caries.
J Clin Periodontol. 2017 Mar;44 Suppl 18:S23-S38. doi: 10.1111/jcpe.12671.
4
Dysbiosis by neutralizing commensal mediated inhibition of pathobionts.
Sci Rep. 2016 Nov 29;6:38179. doi: 10.1038/srep38179.
5
The road less traveled - defining molecular commensalism with Streptococcus sanguinis.
Mol Oral Microbiol. 2017 Jun;32(3):181-196. doi: 10.1111/omi.12170. Epub 2016 Sep 20.
6
Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.
Int J Oral Sci. 2016 Jun 30;8(2):76-83. doi: 10.1038/ijos.2015.55.
7
A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.
Appl Environ Microbiol. 2016 Jan 29;82(7):2187-201. doi: 10.1128/AEM.03887-15.
8
Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans.
Environ Microbiol. 2016 Mar;18(3):904-22. doi: 10.1111/1462-2920.13123. Epub 2015 Dec 10.
9
Dental caries - not just holes in teeth! A perspective.
Mol Oral Microbiol. 2016 Jun;31(3):228-33. doi: 10.1111/omi.12132. Epub 2015 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验