Suppr超能文献

可生物降解的 STING 激动剂纳米颗粒增强癌症免疫治疗。

Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy.

机构信息

Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Nanomedicine. 2018 Feb;14(2):237-246. doi: 10.1016/j.nano.2017.10.013. Epub 2017 Nov 7.

Abstract

Therapeutic cancer vaccines require adjuvants leading to robust type I interferon and proinflammatory cytokine responses in the tumor microenvironment to induce an anti-tumor response. Cyclic dinucleotides (CDNs), a potent Stimulator of Interferon Receptor (STING) agonist, are currently in phase I trials. However, their efficacy may be limited to micromolar concentrations due to the cytosolic residence of STING in the ER membrane. Here we utilized biodegradable, poly(beta-amino ester) (PBAE) nanoparticles to deliver CDNs to the cytosol leading to robust immune response at >100-fold lower extracellular CDN concentrations in vitro. The leading CDN PBAE nanoparticle formulation induced a log-fold improvement in potency in treating established B16 melanoma tumors in vivo when combined with PD-1 blocking antibody in comparison to free CDN without nanoparticles. This nanoparticle-mediated cytosolic delivery method for STING agonists synergizes with checkpoint inhibitors and has strong potential for enhanced cancer immunotherapy.

摘要

治疗性癌症疫苗需要佐剂,在肿瘤微环境中引发强烈的 I 型干扰素和促炎细胞因子反应,从而诱导抗肿瘤反应。环二核苷酸 (CDN) 是一种有效的干扰素受体 (STING) 激动剂,目前正在进行 I 期临床试验。然而,由于 STING 在 ER 膜中的胞质驻留,其功效可能限于微摩尔浓度。在这里,我们利用可生物降解的聚(β-氨基酯)(PBAE)纳米颗粒将 CDN 递送至细胞质,从而导致在体外以 >100 倍低的细胞外 CDN 浓度下产生强烈的免疫反应。与没有纳米颗粒的游离 CDN 相比,当与 PD-1 阻断抗体联合使用时,领先的 CDN PBAE 纳米颗粒制剂在治疗已建立的 B16 黑色素瘤肿瘤方面的效力提高了一个对数级。这种用于 STING 激动剂的纳米颗粒介导的细胞质递送方法与检查点抑制剂协同作用,具有增强癌症免疫治疗的强大潜力。

相似文献

1
Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy.
Nanomedicine. 2018 Feb;14(2):237-246. doi: 10.1016/j.nano.2017.10.013. Epub 2017 Nov 7.
2
Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy.
Nat Nanotechnol. 2019 Mar;14(3):269-278. doi: 10.1038/s41565-018-0342-5. Epub 2019 Jan 21.
4
Delivery of a STING Agonist Using Lipid Nanoparticles Inhibits Pancreatic Cancer Growth.
Int J Nanomedicine. 2024 Aug 27;19:8769-8778. doi: 10.2147/IJN.S462213. eCollection 2024.
6
STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade.
Sci Transl Med. 2015 Apr 15;7(283):283ra52. doi: 10.1126/scitranslmed.aaa4306.
7
STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy.
Biomaterials. 2018 May;163:67-75. doi: 10.1016/j.biomaterials.2018.01.035. Epub 2018 Feb 6.
9
Discovery of IACS-8803 and IACS-8779, potent agonists of stimulator of interferon genes (STING) with robust systemic antitumor efficacy.
Bioorg Med Chem Lett. 2019 Oct 15;29(20):126640. doi: 10.1016/j.bmcl.2019.126640. Epub 2019 Aug 24.
10
TNFα and Radioresistant Stromal Cells Are Essential for Therapeutic Efficacy of Cyclic Dinucleotide STING Agonists in Nonimmunogenic Tumors.
Cancer Immunol Res. 2018 Apr;6(4):422-433. doi: 10.1158/2326-6066.CIR-17-0263. Epub 2018 Feb 22.

引用本文的文献

1
Advances in nanomaterials for enhancing cGAS-STING pathway mediated anti-tumor treatment.
Mater Today Bio. 2025 Aug 11;34:102190. doi: 10.1016/j.mtbio.2025.102190. eCollection 2025 Oct.
2
Nanomaterials and immune checkpoint inhibitors in cancer immunotherapy: the synergistic innovation prospects.
Front Immunol. 2025 Jun 4;16:1582774. doi: 10.3389/fimmu.2025.1582774. eCollection 2025.
4
The cGAS‒STING pathway in cancer immunity: mechanisms, challenges, and therapeutic implications.
J Hematol Oncol. 2025 Apr 5;18(1):40. doi: 10.1186/s13045-025-01691-5.
6
Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines.
Front Immunol. 2024 Aug 14;15:1438030. doi: 10.3389/fimmu.2024.1438030. eCollection 2024.
8
Immunotherapies for locally aggressive cancers.
Adv Drug Deliv Rev. 2024 Jul;210:115331. doi: 10.1016/j.addr.2024.115331. Epub 2024 May 8.
9
Nucleic acid-loaded poly(beta-aminoester) nanoparticles for cancer nano-immuno therapeutics: the good, the bad, and the future.
Drug Deliv Transl Res. 2024 Dec;14(12):3477-3493. doi: 10.1007/s13346-024-01585-y. Epub 2024 May 3.

本文引用的文献

1
Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma.
J Control Release. 2017 Oct 10;263:18-28. doi: 10.1016/j.jconrel.2017.03.384. Epub 2017 Mar 27.
2
Combination immunotherapy: a road map.
J Immunother Cancer. 2017 Feb 21;5:16. doi: 10.1186/s40425-017-0218-5. eCollection 2017.
3
Continuous microfluidic assembly of biodegradable poly(beta-amino ester)/DNA nanoparticles for enhanced gene delivery.
J Biomed Mater Res A. 2017 Jun;105(6):1813-1825. doi: 10.1002/jbm.a.36033. Epub 2017 Apr 12.
4
The host STING pathway at the interface of cancer and immunity.
J Clin Invest. 2016 Jul 1;126(7):2404-11. doi: 10.1172/JCI86892.
6
Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry.
Acta Biomater. 2016 Jun;37:120-30. doi: 10.1016/j.actbio.2016.03.036. Epub 2016 Mar 24.
7
Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma.
N Engl J Med. 2015 Nov 5;373(19):1803-13. doi: 10.1056/NEJMoa1510665. Epub 2015 Sep 25.
8
Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer.
N Engl J Med. 2015 Jul 9;373(2):123-35. doi: 10.1056/NEJMoa1504627. Epub 2015 May 31.
9
Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity.
Cell Rep. 2015 May 19;11(7):1018-30. doi: 10.1016/j.celrep.2015.04.031. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验