Gaudelli Nicole M, Komor Alexis C, Rees Holly A, Packer Michael S, Badran Ahmed H, Bryson David I, Liu David R
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2017 Nov 23;551(7681):464-471. doi: 10.1038/nature24644. Epub 2017 Oct 25.
The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.
胞嘧啶的自发脱氨基作用是C•G碱基对向T•A碱基对转变的主要来源,此类转变占人类已知致病性点突变的一半。因此,有效将靶向A•T碱基对转化为G•C的能力可能会推动对遗传疾病的研究和治疗。腺嘌呤脱氨基产生次黄嘌呤,聚合酶将其视为鸟嘌呤,但目前尚不清楚有哪种酶能使DNA中的腺嘌呤脱氨基。在此,我们描述了腺嘌呤碱基编辑器(ABEs),其可介导基因组DNA中A•T向G•C 的转化。我们通过将一种转移RNA腺苷脱氨酶与催化功能受损的CRISPR-Cas9突变体融合,使其能够作用于DNA。经过广泛的定向进化和蛋白质工程改造,我们得到了第七代ABEs,其能将靶向A•T碱基对高效转化为G•C(在人类细胞中的效率约为50%),产物纯度高(通常至少为99.9%),插入缺失率低(通常不超过0.1%)。与目前基于Cas9核酸酶的方法相比,ABEs能更高效、更精准地引入点突变,且对基因组的脱靶修饰更少,还能在人类细胞中引入疾病校正或疾病抑制突变。与之前的碱基编辑器一起,ABEs能够在不进行双链DNA切割的情况下直接、可编程地引入所有四种转换突变。