Suppr超能文献

癌症中靶向Wnt/β-连环蛋白信号通路:效应物与抑制剂的最新进展

Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.

作者信息

Krishnamurthy Nithya, Kurzrock Razelle

机构信息

Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.

Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA.

出版信息

Cancer Treat Rev. 2018 Jan;62:50-60. doi: 10.1016/j.ctrv.2017.11.002. Epub 2017 Nov 13.

Abstract

The Wnt/beta-catenin pathway is a family of proteins that is implicated in many vital cellular functions such as stem cell regeneration and organogenesis. Several intra-cellular signal transduction pathways are induced by Wnt, notably the Wnt/beta-catenin dependent pathway or canonical pathway and the non-canonical or beta-catenin-independent pathway; the latter includes the Wnt/Ca2+ and Planar Cell Polarity pathway (PCP). Wnt activation occurs at the intestinal crypt floor, and is critical to optimal maintenance of stem cells. Colorectal cancers show evidence of Wnt signaling pathway activation and this is associated with loss of function of the tumor regulator APC. Wnt activation has been observed in breast, lung, and hematopoietic malignancies and contributes to tumor recurrence. The Wnt pathway cross talks with the Notch and Sonic Hedgehog pathways, which has implications for therapeutic interventions in cancers. There are significant challenges in targeting the Wnt pathway, including finding agents that are efficacious without damaging the system of normal somatic stem cell function in cellular repair and tissue homeostasis. Here, we comprehensively review the Wnt pathway and its interactions with the Notch and Sonic Hedgehog pathways. We present the state of the field in effectors and inhibitors of Wnt signaling, including updates on clinical trials in various cancers with inhibitors of Wnt, Notch, and Sonic Hedgehog.

摘要

Wnt/β-连环蛋白信号通路是一类蛋白质家族,涉及许多重要的细胞功能,如干细胞再生和器官发生。Wnt可诱导多种细胞内信号转导通路,特别是Wnt/β-连环蛋白依赖性通路或经典通路以及非经典或β-连环蛋白非依赖性通路;后者包括Wnt/Ca2+和平面细胞极性通路(PCP)。Wnt激活发生在肠隐窝底部,对干细胞的最佳维持至关重要。结直肠癌显示出Wnt信号通路激活的证据,这与肿瘤调节因子APC的功能丧失有关。在乳腺癌、肺癌和血液系统恶性肿瘤中也观察到Wnt激活,并导致肿瘤复发。Wnt通路与Notch和Sonic Hedgehog通路相互作用,这对癌症的治疗干预具有重要意义。靶向Wnt通路存在重大挑战,包括找到在不损害细胞修复和组织稳态中正常体细胞干细胞功能系统的情况下有效的药物。在此,我们全面综述Wnt通路及其与Notch和Sonic Hedgehog通路的相互作用。我们介绍了Wnt信号传导的效应器和抑制剂领域的现状,包括各种癌症中使用Wnt、Notch和Sonic Hedgehog抑制剂的临床试验的最新情况。

相似文献

1
Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.
Cancer Treat Rev. 2018 Jan;62:50-60. doi: 10.1016/j.ctrv.2017.11.002. Epub 2017 Nov 13.
2
Targeting the canonical Wnt/β-catenin pathway in hematological malignancies.
Cancer Sci. 2015 Jun;106(6):665-671. doi: 10.1111/cas.12655. Epub 2015 Apr 1.
3
Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways.
Phytother Res. 2017 Apr;31(4):680-688. doi: 10.1002/ptr.5791. Epub 2017 Feb 15.
6
Inhibition of the Wnt-β-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy.
Biochem Biophys Res Commun. 2013 Feb 8;431(2):274-9. doi: 10.1016/j.bbrc.2012.12.118. Epub 2013 Jan 3.
7
Huaier aqueous extract inhibits stem-like characteristics of MCF7 breast cancer cells via inactivation of hedgehog pathway.
Tumour Biol. 2014 Nov;35(11):10805-13. doi: 10.1007/s13277-014-2390-2. Epub 2014 Jul 31.
8
A Wnt-ow of opportunity: targeting the Wnt/beta-catenin pathway in breast cancer.
Curr Drug Targets. 2010 Sep;11(9):1074-88. doi: 10.2174/138945010792006780.
9
Wnt/beta-catenin pathway: modulating anticancer immune response.
J Hematol Oncol. 2017 May 5;10(1):101. doi: 10.1186/s13045-017-0471-6.
10
Targeting the Wnt/β-catenin signaling pathway in cancer.
J Hematol Oncol. 2020 Dec 4;13(1):165. doi: 10.1186/s13045-020-00990-3.

引用本文的文献

1
The Good, the Bad, or Both? Unveiling the Molecular Functions of LINC01133 in Tumors.
Noncoding RNA. 2025 Jul 30;11(4):58. doi: 10.3390/ncrna11040058.
2
Menin facilitates the cell proliferation of bladder cancer via modulating the TFAP2C/β-catenin axis.
Genes Dis. 2025 Feb 20;12(6):101565. doi: 10.1016/j.gendis.2025.101565. eCollection 2025 Nov.
3
Evolutionary conservation and cancer implications of the WNT signaling pathway.
Med Oncol. 2025 Aug 20;42(10):434. doi: 10.1007/s12032-025-02950-8.
6
Modeling the Bone Marrow Niche in Multiple Myeloma: From 2D Cultures to 3D Systems.
Int J Mol Sci. 2025 Jun 27;26(13):6229. doi: 10.3390/ijms26136229.
7
Aberrant angiogenic signaling in HCC: therapeutic targeting and drug resistance.
Front Oncol. 2025 Jun 18;15:1595195. doi: 10.3389/fonc.2025.1595195. eCollection 2025.
10
Multiple signaling pathways in the frontiers of lung cancer progression.
Front Immunol. 2025 Jun 10;16:1593793. doi: 10.3389/fimmu.2025.1593793. eCollection 2025.

本文引用的文献

3
WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death.
Sci Adv. 2017 Jun 21;3(6):e1700090. doi: 10.1126/sciadv.1700090. eCollection 2017 Jun.
5
Acute myeloid leukemia - strategies and challenges for targeting oncogenic Hedgehog/GLI signaling.
Cell Commun Signal. 2017 Jan 25;15(1):8. doi: 10.1186/s12964-017-0163-4.
7
Tankyrase Inhibition Causes Reversible Intestinal Toxicity in Mice with a Therapeutic Index < 1.
Toxicol Pathol. 2016 Feb;44(2):267-78. doi: 10.1177/0192623315621192. Epub 2015 Dec 20.
8
The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways.
Biochim Biophys Acta. 2016 Feb;1863(2):303-13. doi: 10.1016/j.bbamcr.2015.11.020. Epub 2015 Nov 22.
9
Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer.
Pharmacol Ther. 2015 Dec;156:1-9. doi: 10.1016/j.pharmthera.2015.10.009. Epub 2015 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验