Suppr超能文献

小麦 HKT1;5 中的结构变异影响钠离子转运能力。

Structural variations in wheat HKT1;5 underpin differences in Na transport capacity.

机构信息

Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.

School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.

出版信息

Cell Mol Life Sci. 2018 Mar;75(6):1133-1144. doi: 10.1007/s00018-017-2716-5. Epub 2017 Nov 27.

Abstract

An important trait associated with the salt tolerance of wheat is the exclusion of sodium ions (Na) from the shoot. We have previously shown that the sodium transporters TmHKT1;5-A and TaHKT1;5-D, from Triticum monoccocum (Tm) and Triticum aestivum (Ta), are encoded by genes underlying the major shoot Na-exclusion loci Nax1 and Kna1, respectively. Here, using heterologous expression, we show that the affinity (K ) for the Na transport of TmHKT1;5-A, at 2.66 mM, is higher than that of TaHKT1;5-D at 7.50 mM. Through 3D structural modelling, we identify residues D/a gap and D/G that contribute to this property. We identify four additional mutations in amino acid residues that inhibit the transport activity of TmHKT1;5-A, which are predicted to be the result of an occlusion of the pore. We propose that the underlying transport properties of TmHKT1;5-A and TaHKT1;5-D contribute to their unique ability to improve Na exclusion in wheat that leads to an improved salinity tolerance in the field.

摘要

与小麦耐盐性相关的一个重要特征是将钠离子(Na)从地上部分排除。我们之前已经表明,来自节节麦(Tm)和普通小麦(Ta)的钠离子转运蛋白 TmHKT1;5-A 和 TaHKT1;5-D 分别由主要地上部 Na 排斥基因 Nax1 和 Kna1 编码。在这里,我们通过异源表达表明,TmHKT1;5-A 的 Na 转运亲和力(K)为 2.66 mM,高于 TaHKT1;5-D 的 7.50 mM。通过 3D 结构建模,我们确定了 D/a 间隙和 D/G 残基对这一特性有贡献。我们还鉴定了另外四个抑制 TmHKT1;5-A 转运活性的氨基酸残基突变,这些突变可能是由于孔道阻塞造成的。我们提出,TmHKT1;5-A 和 TaHKT1;5-D 的潜在转运特性有助于它们在小麦中提高 Na 排斥的独特能力,从而在田间提高耐盐性。

相似文献

1
Structural variations in wheat HKT1;5 underpin differences in Na transport capacity.
Cell Mol Life Sci. 2018 Mar;75(6):1133-1144. doi: 10.1007/s00018-017-2716-5. Epub 2017 Nov 27.
2
The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.
Plant J. 2014 Nov;80(3):516-26. doi: 10.1111/tpj.12651. Epub 2014 Oct 1.
4
High affinity Na transport by wheat HKT1;5 is blocked by K.
Plant Direct. 2020 Oct 21;4(10):e00275. doi: 10.1002/pld3.275. eCollection 2020 Oct.
5
A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing.
PLoS One. 2012;7(7):e39865. doi: 10.1371/journal.pone.0039865. Epub 2012 Jul 11.
6
A single nucleotide substitution in TaHKT1;5-D controls shoot Na accumulation in bread wheat.
Plant Cell Environ. 2020 Sep;43(9):2158-2171. doi: 10.1111/pce.13841. Epub 2020 Jul 22.
8
Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters.
Channels (Austin). 2007 May-Jun;1(3):161-71. doi: 10.4161/chan.4374. Epub 2007 Apr 30.
10
Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene.
Nat Biotechnol. 2012 Mar 11;30(4):360-4. doi: 10.1038/nbt.2120.

引用本文的文献

3
Salt stress proteins in plants: An overview.
Front Plant Sci. 2022 Dec 16;13:999058. doi: 10.3389/fpls.2022.999058. eCollection 2022.
4
Unlocking Allelic Diversity for Sustainable Development of Salinity Stress Tolerance in Rice.
Curr Genomics. 2021 Dec 30;22(6):393-403. doi: 10.2174/1389202922666211005121412.
6
High affinity Na transport by wheat HKT1;5 is blocked by K.
Plant Direct. 2020 Oct 21;4(10):e00275. doi: 10.1002/pld3.275. eCollection 2020 Oct.
7
A single nucleotide substitution in TaHKT1;5-D controls shoot Na accumulation in bread wheat.
Plant Cell Environ. 2020 Sep;43(9):2158-2171. doi: 10.1111/pce.13841. Epub 2020 Jul 22.
8
HKT1;5 Transporter Gene Expression and Association of Amino Acid Substitutions With Salt Tolerance Across Rice Genotypes.
Front Plant Sci. 2019 Nov 4;10:1420. doi: 10.3389/fpls.2019.01420. eCollection 2019.
9
An extracellular cation coordination site influences ion conduction of OsHKT2;2.
BMC Plant Biol. 2019 Jul 15;19(1):316. doi: 10.1186/s12870-019-1909-5.
10
Roles of membrane transporters: connecting the dots from sequence to phenotype.
Ann Bot. 2019 Sep 24;124(2):201-208. doi: 10.1093/aob/mcz066.

本文引用的文献

1
Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat () Genotypes with Contrasting Salt Tolerance.
Front Plant Sci. 2017 Jun 30;8:1151. doi: 10.3389/fpls.2017.01151. eCollection 2017.
2
Crystal structure of the potassium-importing KdpFABC membrane complex.
Nature. 2017 Jun 29;546(7660):681-685. doi: 10.1038/nature22970. Epub 2017 Jun 21.
3
Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance.
Annu Rev Plant Biol. 2017 Apr 28;68:405-434. doi: 10.1146/annurev-arplant-042916-040936. Epub 2017 Feb 22.
5
A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.
Plant Physiol. 2016 Jul;171(3):2112-26. doi: 10.1104/pp.16.00569. Epub 2016 May 9.
6
Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm.
Rice (N Y). 2016 Dec;9(1):15. doi: 10.1186/s12284-016-0083-8. Epub 2016 Mar 29.
8
Salinity tolerance of crops - what is the cost?
New Phytol. 2015 Nov;208(3):668-73. doi: 10.1111/nph.13519. Epub 2015 Jun 24.
10
The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.
Plant J. 2014 Nov;80(3):516-26. doi: 10.1111/tpj.12651. Epub 2014 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验