Suppr超能文献

肾脏发育的跨平台单细胞分析表明,基质细胞表达胶质细胞源性神经营养因子(Gdnf)。

Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.

作者信息

Magella Bliss, Adam Mike, Potter Andrew S, Venkatasubramanian Meenakshi, Chetal Kashish, Hay Stuart B, Salomonis Nathan, Potter S Steven

机构信息

Cincinnati Children's Medical Center, Division of Developmental Biology, 3333 Burnet Ave., Cincinnati, OH 45229, USA.

Cincinnati Children's Medical Center, Division of Biomedical Informatics, 3333 Burnet Ave., Cincinnati OH 45229, USA.

出版信息

Dev Biol. 2018 Feb 1;434(1):36-47. doi: 10.1016/j.ydbio.2017.11.006. Epub 2017 Nov 26.

Abstract

The developing kidney provides a useful model for study of the principles of organogenesis. In this report we use three independent platforms, Drop-Seq, Chromium 10x Genomics and Fluidigm C1, to carry out single cell RNA-Seq (scRNA-Seq) analysis of the E14.5 mouse kidney. Using the software AltAnalyze, in conjunction with the unsupervised approach ICGS, we were unable to identify and confirm the presence of 16 distinct cell populations during this stage of active nephrogenesis. Using a novel integrative supervised computational strategy, we were able to successfully harmonize and compare the cell profiles across all three technological platforms. Analysis of possible cross compartment receptor/ligand interactions identified the nephrogenic zone stroma as a source of GDNF. This was unexpected because the cap mesenchyme nephron progenitors had been thought to be the sole source of GDNF, which is a key driver of branching morphogenesis of the collecting duct system. The expression of Gdnf by stromal cells was validated in several ways, including Gdnf in situ hybridization combined with immunohistochemistry for SIX2, and marker of nephron progenitors, and MEIS1, a marker of stromal cells. Finally, the single cell gene expression profiles generated in this study confirmed and extended previous work showing the presence of multilineage priming during kidney development. Nephron progenitors showed stochastic expression of genes associated with multiple potential differentiation lineages.

摘要

发育中的肾脏为研究器官发生原理提供了一个有用的模型。在本报告中,我们使用了三个独立的平台,即Drop-Seq、Chromium 10x Genomics和Fluidigm C1,对E14.5小鼠肾脏进行单细胞RNA测序(scRNA-Seq)分析。使用软件AltAnalyze,并结合无监督方法ICGS,我们无法在这个活跃肾发生阶段识别并确认16个不同细胞群的存在。通过一种新颖的综合监督计算策略,我们成功地整合并比较了所有三个技术平台上的细胞图谱。对可能的跨区室受体/配体相互作用的分析确定了肾发生区基质是胶质细胞源性神经营养因子(GDNF)的来源。这是出乎意料的,因为帽状间充质肾单位祖细胞一直被认为是GDNF的唯一来源,而GDNF是集合管系统分支形态发生的关键驱动因素。通过多种方式验证了基质细胞中Gdnf的表达,包括将Gdnf原位杂交与针对SIX2(肾单位祖细胞的标志物)和MEIS1(基质细胞的标志物)的免疫组织化学相结合。最后,本研究中生成的单细胞基因表达谱证实并扩展了先前的工作,表明在肾脏发育过程中存在多谱系启动。肾单位祖细胞显示出与多个潜在分化谱系相关的基因的随机表达。

相似文献

1
Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.
Dev Biol. 2018 Feb 1;434(1):36-47. doi: 10.1016/j.ydbio.2017.11.006. Epub 2017 Nov 26.
4
p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.
Development. 2015 Apr 1;142(7):1228-41. doi: 10.1242/dev.111617.
5
Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF.
Development. 2021 May 15;148(10). doi: 10.1242/dev.197475. Epub 2021 May 25.
6
Down-regulated Six2 by knockdown of neurofibromin results in apoptosis of metanephric mesenchyme cells in vitro.
Mol Cell Biochem. 2014 May;390(1-2):205-13. doi: 10.1007/s11010-014-1971-0. Epub 2014 Feb 27.
7
Notch signaling promotes nephrogenesis by downregulating Six2.
Development. 2016 Nov 1;143(21):3907-3913. doi: 10.1242/dev.143503. Epub 2016 Sep 15.
8
Neonatal nephron loss during active nephrogenesis results in altered expression of renal developmental genes and markers of kidney injury.
Physiol Genomics. 2021 Dec 1;53(12):509-517. doi: 10.1152/physiolgenomics.00059.2021. Epub 2021 Oct 27.
9
Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa.
Development. 2005 Dec;132(24):5437-49. doi: 10.1242/dev.02095. Epub 2005 Nov 16.

引用本文的文献

1
Bridging the gap of late-gestation nephrogenesis using a non-human primate model.
bioRxiv. 2025 Aug 22:2025.08.18.670897. doi: 10.1101/2025.08.18.670897.
3
Podocyte involvement in the pathogenesis of preterm-related long-term chronic kidney disease.
Histol Histopathol. 2024 May;39(5):557-564. doi: 10.14670/HH-18-675. Epub 2023 Nov 15.
4
Single cell sequencing technology and its application in Hypoxic ischemic encephalopathy research.
Ibrain. 2021 Sep 28;7(3):227-234. doi: 10.1002/j.2769-2795.2021.tb00086.x. eCollection 2021 Sep.
5
Hedgehog-GLI mediated control of renal formation and malformation.
Front Nephrol. 2023 Apr 20;3:1176347. doi: 10.3389/fneph.2023.1176347. eCollection 2023.
6
Differentiation and single-cell RNA-seq analyses of human pluripotent-stem-cell-derived renal organoids.
STAR Protoc. 2023 May 22;4(2):102314. doi: 10.1016/j.xpro.2023.102314.
8
Vascular endothelial cell development and diversity.
Nat Rev Cardiol. 2023 Mar;20(3):197-210. doi: 10.1038/s41569-022-00770-1. Epub 2022 Oct 5.
9
Assessing kidney development and disease using kidney organoids and CRISPR engineering.
Front Cell Dev Biol. 2022 Sep 2;10:948395. doi: 10.3389/fcell.2022.948395. eCollection 2022.
10
Regulation of nephron progenitor cell lifespan and nephron endowment.
Nat Rev Nephrol. 2022 Nov;18(11):683-695. doi: 10.1038/s41581-022-00620-w. Epub 2022 Sep 14.

本文引用的文献

3
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.
Nature. 2016 Sep 29;537(7622):698-702. doi: 10.1038/nature19348. Epub 2016 Aug 31.
4
On the Dependency of Cellular Protein Levels on mRNA Abundance.
Cell. 2016 Apr 21;165(3):535-50. doi: 10.1016/j.cell.2016.03.014.
5
Development of the Mammalian Kidney.
Curr Top Dev Biol. 2016;117:31-64. doi: 10.1016/bs.ctdb.2015.10.010. Epub 2016 Jan 23.
6
A draft network of ligand-receptor-mediated multicellular signalling in human.
Nat Commun. 2015 Jul 22;6:7866. doi: 10.1038/ncomms8866.
7
Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development.
BMC Dev Biol. 2015 Jul 19;15:28. doi: 10.1186/s12861-015-0078-5.
8
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Cell. 2015 May 21;161(5):1202-1214. doi: 10.1016/j.cell.2015.05.002.
9
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
Cell. 2015 May 21;161(5):1187-1201. doi: 10.1016/j.cell.2015.04.044.
10
The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study.
PLoS Med. 2014 Nov 11;11(11):e1001759. doi: 10.1371/journal.pmed.1001759. eCollection 2014 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验