Dhar Supurna, Kumari Hansi, Balasubramanian Deepak, Mathee Kalai
Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
Vanderbilt University, School of Medicine, Nashville, TN, USA.
J Med Microbiol. 2018 Jan;67(1):1-21. doi: 10.1099/jmm.0.000636. Epub 2017 Nov 29.
The bacterial cell-wall that forms a protective layer over the inner membrane is called the murein sacculus - a tightly cross-linked peptidoglycan mesh unique to bacteria. Cell-wall synthesis and recycling are critical cellular processes essential for cell growth, elongation and division. Both de novo synthesis and recycling involve an array of enzymes across all cellular compartments, namely the outer membrane, periplasm, inner membrane and cytoplasm. Due to the exclusivity of peptidoglycan in the bacterial cell-wall, these players are the target of choice for many antibacterial agents. Our current understanding of cell-wall biochemistry and biogenesis in Gram-negative organisms stems mostly from studies of Escherichia coli. An incomplete knowledge on these processes exists for the opportunistic Gram-negative pathogen, Pseudomonas aeruginosa. In this review, cell-wall synthesis and recycling in the various cellular compartments are compared and contrasted between E. coli and P. aeruginosa. Despite the fact that there is a remarkable similarity of these processes between the two bacterial species, crucial differences alter their resistance to β-lactams, fluoroquinolones and aminoglycosides. One of the common mediators underlying resistance is the amp system whose mechanism of action is closely associated with the cell-wall recycling pathway. The activation of amp genes results in expression of AmpC β-lactamase through its cognate regulator AmpR which further regulates multi-drug resistance. In addition, other cell-wall recycling enzymes also contribute to antibiotic resistance. This comprehensive summary of the information should spawn new ideas on how to effectively target cell-wall processes to combat the growing resistance to existing antibiotics.
在细菌内膜上形成保护层的细菌细胞壁被称为胞壁质囊泡——一种细菌特有的紧密交联的肽聚糖网状结构。细胞壁的合成和循环利用是细胞生长、伸长和分裂所必需的关键细胞过程。从头合成和循环利用都涉及所有细胞区室中的一系列酶,即外膜、周质、内膜和细胞质。由于肽聚糖在细菌细胞壁中的独特性,这些参与者是许多抗菌剂的首选靶点。我们目前对革兰氏阴性菌细胞壁生物化学和生物发生的理解主要来自于对大肠杆菌的研究。对于机会性革兰氏阴性病原体铜绿假单胞菌,对这些过程的了解并不完整。在这篇综述中,比较和对比了大肠杆菌和铜绿假单胞菌在各个细胞区室中的细胞壁合成和循环利用情况。尽管这两种细菌在这些过程上有显著的相似性,但关键的差异改变了它们对β-内酰胺类、氟喹诺酮类和氨基糖苷类药物的耐药性。耐药性的一个常见介导因素是amp系统,其作用机制与细胞壁循环途径密切相关。amp基因的激活通过其同源调节因子AmpR导致AmpCβ-内酰胺酶的表达,AmpR进一步调节多药耐药性。此外,其他细胞壁循环利用酶也对抗生素耐药性有贡献。对这些信息的全面总结应该会催生关于如何有效靶向细胞壁过程以对抗对现有抗生素日益增长的耐药性的新想法。