Department of Biology, East Carolina University, Greenville, NC 27858, USA.
Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
Mol Plant. 2018 Feb 5;11(2):245-256. doi: 10.1016/j.molp.2017.11.010. Epub 2017 Nov 29.
User-friendly tools for robust transcriptional activation of endogenous genes are highly demanded in plants. We previously showed that a dCas9-VP64 system consisting of the deactivated CRISPR-associated protein 9 (dCas9) fused with four tandem repeats of the transcriptional activator VP16 (VP64) could be used for transcriptional activation of endogenous genes in plants. In this study, we developed a second generation of vector systems for enhanced transcriptional activation in plants. We tested multiple strategies for dCas9-based transcriptional activation, and found that simultaneous recruitment of VP64 by dCas9 and a modified guide RNA scaffold gRNA2.0 (designated CRISPR-Act2.0) yielded stronger transcriptional activation than the dCas9-VP64 system. Moreover, we developed a multiplex transcription activator-like effector activation (mTALE-Act) system for simultaneous activation of up to four genes in plants. Our results suggest that mTALE-Act is even more effective than CRISPR-Act2.0 in most cases tested. In addition, we explored tissue-specific gene activation using positive feedback loops. Interestingly, our study revealed that certain endogenous genes are more amenable than others to transcriptional activation, and tightly regulated genes may cause target gene silencing when perturbed by activation probes. Hence, these new tools could be used to investigate gene regulatory networks and their control mechanisms. Assembly of multiplex CRISPR-Act2.0 and mTALE-Act systems are both based on streamlined and PCR-independent Golden Gate and Gateway cloning strategies, which will facilitate transcriptional activation applications in both dicots and monocots.
在植物中,人们非常需要用户友好型的工具来实现内源基因的稳健转录激活。我们之前曾表明,由失活的 CRISPR 相关蛋白 9(dCas9)与转录激活剂 VP16(VP64)的四个串联重复融合而成的 dCas9-VP64 系统可用于植物中内源基因的转录激活。在这项研究中,我们开发了第二代用于增强植物转录激活的载体系统。我们测试了多种基于 dCas9 的转录激活策略,发现 dCas9 和经过修饰的向导 RNA 支架 gRNA2.0(命名为 CRISPR-Act2.0)同时募集 VP64 可产生比 dCas9-VP64 系统更强的转录激活。此外,我们开发了一种多聚转录激活效应物激活(mTALE-Act)系统,用于在植物中同时激活多达四个基因。我们的结果表明,在大多数测试情况下,mTALE-Act 比 CRISPR-Act2.0 更有效。此外,我们还探索了使用正反馈回路进行组织特异性基因激活。有趣的是,我们的研究表明,某些内源性基因比其他基因更容易被转录激活,并且当受到激活探针的干扰时,受严格调控的基因可能会导致靶基因沉默。因此,这些新工具可用于研究基因调控网络及其控制机制。多重 CRISPR-Act2.0 和 mTALE-Act 系统的组装都是基于简化和无需 PCR 的 Golden Gate 和 Gateway 克隆策略,这将有助于双子叶植物和单子叶植物中转录激活的应用。