1 Division of Pulmonary and Critical Care Medicine.
2 The Andrew M. Tager Fibrosis Research Center, and.
Am J Respir Cell Mol Biol. 2018 Apr;58(4):471-481. doi: 10.1165/rcmb.2017-0075OC.
Pulmonary fibrosis is thought to result from dysregulated wound repair after repetitive lung injury. Many cellular responses to injury involve rearrangements of the actin cytoskeleton mediated by the two isoforms of the Rho-associated coiled-coil-forming protein kinase (ROCK), ROCK1 and ROCK2. In addition, profibrotic mediators such as transforming growth factor-β, thrombin, and lysophosphatidic acid act through receptors that activate ROCK. Inhibition of ROCK activation may be a potent therapeutic strategy for human pulmonary fibrosis. Pharmacological inhibition of ROCK using nonselective ROCK inhibitors has been shown to prevent fibrosis in animal models; however, the specific roles of each ROCK isoform are poorly understood. Furthermore, the pleiotropic effects of this kinase have raised concerns about on-target adverse effects of ROCK inhibition such as hypotension. Selective inhibition of one isoform might be a better-tolerated strategy. In the present study, we used a genetic approach to determine the roles of ROCK1 and ROCK2 in a mouse model of bleomycin-induced pulmonary fibrosis. Using ROCK1- or ROCK2-haploinsufficient mice, we found that reduced expression of either ROCK1 or ROCK2 was sufficient to protect them from bleomycin-induced pulmonary fibrosis. In addition, we found that both isoforms contribute to the profibrotic responses of epithelial cells, endothelial cells, and fibroblasts. Interestingly, ROCK1- and ROCK2-haploinsufficient mice exhibited similar protection from bleomycin-induced vascular leak, myofibroblast differentiation, and fibrosis; however, ROCK1-haploinsufficient mice demonstrated greater attenuation of epithelial cell apoptosis. These findings suggest that selective inhibition of either ROCK isoform has the potential to be an effective therapeutic strategy for pulmonary fibrosis.
肺纤维化被认为是由于反复肺损伤后失调的伤口修复所致。许多细胞对损伤的反应都涉及到肌动蛋白细胞骨架的重排,这是由两种 Rho 相关卷曲螺旋形成蛋白激酶(ROCK)同工型 ROCK1 和 ROCK2 介导的。此外,促纤维化介质,如转化生长因子-β、凝血酶和溶血磷脂酸,通过激活 ROCK 的受体起作用。抑制 ROCK 的激活可能是治疗人类肺纤维化的有效策略。使用非选择性 ROCK 抑制剂抑制 ROCK 的药理学作用已被证明可以预防动物模型中的纤维化;然而,每种 ROCK 同工型的具体作用尚不清楚。此外,这种激酶的多效性作用引起了人们对 ROCK 抑制的靶标不良反应(如低血压)的关注。选择性抑制一种同工型可能是一种更好耐受的策略。在本研究中,我们使用遗传方法来确定 ROCK1 和 ROCK2 在博来霉素诱导的肺纤维化小鼠模型中的作用。使用 ROCK1 或 ROCK2 单倍不足小鼠,我们发现降低任一 ROCK1 或 ROCK2 的表达足以保护它们免受博来霉素诱导的肺纤维化。此外,我们发现两种同工型都有助于上皮细胞、内皮细胞和成纤维细胞的促纤维化反应。有趣的是,ROCK1 和 ROCK2 单倍不足小鼠对博来霉素诱导的血管渗漏、肌成纤维细胞分化和纤维化表现出相似的保护作用;然而,ROCK1 单倍不足小鼠显示出对上皮细胞凋亡的更大抑制作用。这些发现表明,选择性抑制任一 ROCK 同工型都有可能成为治疗肺纤维化的有效治疗策略。