Department of Cell Biology and Physiology.
Neuroscience Center.
J Neurosci. 2018 Jan 24;38(4):918-936. doi: 10.1523/JNEUROSCI.1305-17.2017. Epub 2017 Dec 8.
Mutations or deletions of the transcription factor are linked to Pitt-Hopkins syndrome (PTHS) and schizophrenia, suggesting that the precise pathogenic mutations dictate cellular, synaptic, and behavioral consequences. Here, we generated two novel mouse models of PTHS, one that mimics the most common pathogenic point mutation (human R580W, mouse R579W) and one that deletes three pathogenic arginines, and explored phenotypes of these lines alongside models of pan-cellular or CNS-specific heterozygous disruption. We used mice of both sexes to show that impaired function results in consistent microcephaly, hyperactivity, reduced anxiety, and deficient spatial learning. All four PTHS mouse models demonstrated exaggerated hippocampal long-term potentiation (LTP), consistent with deficits in hippocampus-mediated behaviors. We further examined R579W mutant mice and mice with pan-cellular heterozygosity and found that they exhibited hippocampal NMDA receptor hyperfunction, which likely drives the enhanced LTP. Together, our data pinpoint convergent neurobiological features in PTHS mouse models and provide a foundation for preclinical studies and a rationale for testing whether NMDAR antagonists might be used to treat PTHS. Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder associated with mutations/deletions. Despite this genetic insight, there is a need to identify the function of TCF4 in the brain. Toward this goal, we developed two mouse lines, including one harboring the most prevalent pathogenic point mutation, and compared them with two existing models that conditionally delete Our data identify a set of overlapping phenotypes that may serve as outcome measures for preclinical studies of PTHS treatments. We also discovered penetrant enhanced synaptic plasticity across mouse models that may be linked to increased NMDA receptor function. These data reveal convergent neurobiological characteristics of PTHS mouse models and support the further investigation of NMDA receptor antagonists as a possible PTHS treatment.
转录因子的突变或缺失与皮特-霍普金斯综合征(PTHS)和精神分裂症有关,这表明精确的致病突变决定了细胞、突触和行为的后果。在这里,我们生成了两种新的 PTHS 小鼠模型,一种模拟最常见的致病点突变(人 R580W,鼠 R579W),另一种缺失三个致病精氨酸,并探索了这些品系的表型以及全细胞或中枢神经系统特异性杂合 破坏的模型。我们使用雌雄小鼠表明, 功能受损导致一致的小头畸形、多动、焦虑减少和空间学习能力缺陷。所有四种 PTHS 小鼠模型均表现出海马长时程增强(LTP)的夸大,与海马介导的行为缺陷一致。我们进一步研究了 R579W 突变小鼠和全细胞杂合性 小鼠,发现它们表现出海马 NMDA 受体超功能,这可能驱动增强的 LTP。总之,我们的数据确定了 PTHS 小鼠模型中的神经生物学特征,并为临床前研究提供了基础,并为测试 NMDA 受体拮抗剂是否可用于治疗 PTHS 提供了依据。皮特-霍普金斯综合征(PTHS)是一种罕见的神经发育障碍,与 突变/缺失有关。尽管有了这种遗传上的认识,但仍需要确定 TCF4 在大脑中的功能。为了实现这一目标,我们开发了两种小鼠品系,包括一种携带最常见的致病性点突变,并将其与两种现有的条件性缺失 我们的数据确定了一组重叠的表型,可作为 PTHS 治疗的临床前研究的结果衡量标准。我们还发现,所有的小鼠模型都存在明显增强的突触可塑性,这可能与 NMDA 受体功能的增加有关。这些数据揭示了 PTHS 小鼠模型的神经生物学特征,并支持进一步研究 NMDA 受体拮抗剂作为 PTHS 治疗的可能方法。