Suppr超能文献

高盐条件改变幽门螺杆菌编码外膜蛋白基因的转录。

High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins.

机构信息

Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

Infect Immun. 2018 Feb 20;86(3). doi: 10.1128/IAI.00626-17. Print 2018 Mar.

Abstract

infection and high dietary salt intake are risk factors for the development of gastric adenocarcinoma. One possible mechanism by which a high-salt diet could influence gastric cancer risk is by modulating gene expression. In this study, we utilized transcriptome sequencing (RNA-seq) methodology to compare the transcriptional profiles of grown in media containing different concentrations of sodium chloride. We identified 118 differentially expressed genes (65 upregulated and 53 downregulated in response to high-salt conditions), including multiple members of 14 operons. Twenty-nine of the differentially expressed genes encode proteins previously shown to undergo salt-responsive changes in abundance, based on proteomic analyses. Real-time reverse transcription (RT)-PCR analyses validated differential expression of multiple genes encoding outer membrane proteins, including adhesins (SabA and HopQ) and proteins involved in iron acquisition (FecA2 and FecA3). Transcript levels of , , and are increased under high-salt conditions, whereas transcript levels of and are decreased under high-salt conditions. Transcription of , , , and is derepressed in an mutant strain, but salt-responsive transcription of these genes is not mediated by the ArsRS two-component system, and the CrdRS and FlgRS two-component systems do not have any detectable effects on transcription of these genes. In summary, these data provide a comprehensive view of transcriptional alterations that occur in response to high-salt environmental conditions.

摘要

感染和高盐饮食是胃腺癌发展的危险因素。高盐饮食可能通过调节基因表达影响胃癌风险的一个可能机制。在这项研究中,我们利用转录组测序(RNA-seq)方法比较了在含有不同浓度氯化钠的培养基中生长的的转录谱。我们鉴定出 118 个差异表达基因(65 个在高盐条件下上调,53 个下调),包括 14 个操纵子的多个成员。29 个差异表达基因编码的蛋白质以前根据蛋白质组分析显示丰度发生盐响应变化。实时逆转录(RT)-PCR 分析验证了多个编码外膜蛋白的基因的差异表达,包括粘附素(SabA 和 HopQ)和参与铁摄取的蛋白质(FecA2 和 FecA3)。在高盐条件下, 、 、 和 的转录水平增加,而在高盐条件下, 、 和 的转录水平降低。在 突变株中, 、 、 和 的转录被解除阻遏,但这些基因的盐响应转录不是由 ArsRS 双组分系统介导的,CrdRS 和 FlgRS 双组分系统对这些基因的转录没有任何可检测到的影响。总之,这些数据提供了一个全面的视角,了解了 对高盐环境条件的反应所发生的转录改变。

相似文献

1
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins.
Infect Immun. 2018 Feb 20;86(3). doi: 10.1128/IAI.00626-17. Print 2018 Mar.
3
Alteration of the Helicobacter pylori membrane proteome in response to changes in environmental salt concentration.
Proteomics Clin Appl. 2015 Dec;9(11-12):1021-34. doi: 10.1002/prca.201400176. Epub 2015 Sep 14.
7
Regulation of Helicobacter pylori cagA expression in response to salt.
Cancer Res. 2007 May 15;67(10):4709-15. doi: 10.1158/0008-5472.CAN-06-4746.
8
Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system.
Microbiology (Reading). 2008 Aug;154(Pt 8):2231-2240. doi: 10.1099/mic.0.2007/016055-0.
9
Effect of environmental salt concentration on the Helicobacter pylori exoproteome.
J Proteomics. 2019 Jun 30;202:103374. doi: 10.1016/j.jprot.2019.05.002. Epub 2019 May 4.
10
The role of the Ferric Uptake Regulator (Fur) in regulation of Helicobacter pylori iron uptake.
Helicobacter. 2002 Aug;7(4):237-44. doi: 10.1046/j.1523-5378.2002.00088.x.

引用本文的文献

1
Menadione reduces the expression of virulence- and colonization-associated genes in .
Microbiology (Reading). 2025 Mar;171(3). doi: 10.1099/mic.0.001539.
2
Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development.
Curr Top Microbiol Immunol. 2023;444:25-52. doi: 10.1007/978-3-031-47331-9_2.
3
Essential role of apolipoprotein N-acyltransferase (Lnt) in stomach colonization.
Infect Immun. 2023 Dec 12;91(12):e0036923. doi: 10.1128/iai.00369-23. Epub 2023 Nov 8.
4
Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria.
Diagnostics (Basel). 2023 Oct 18;13(20):3246. doi: 10.3390/diagnostics13203246.
5
High-Salt Diet Exacerbates Infection and Increases Gastric Cancer Risks.
J Pers Med. 2023 Aug 28;13(9):1325. doi: 10.3390/jpm13091325.
6
Risk factors of infection in Bukavu, Democratic Republic of the Congo: a case-control study.
Ann Med Surg (Lond). 2023 Mar 25;85(4):727-731. doi: 10.1097/MS9.0000000000000409. eCollection 2023 Apr.
7
Identification of an Essential LolD-Like Protein in Helicobacter pylori.
J Bacteriol. 2023 Apr 25;205(4):e0005223. doi: 10.1128/jb.00052-23. Epub 2023 Mar 27.
10
Spatiotemporal Distribution and Evolution of Digestive Tract Cancer Cases in Lujiang County, China since 2012.
Int J Environ Res Public Health. 2022 Jun 17;19(12):7451. doi: 10.3390/ijerph19127451.

本文引用的文献

1
Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection.
PLoS Pathog. 2017 Jun 23;13(6):e1006464. doi: 10.1371/journal.ppat.1006464. eCollection 2017 Jun.
3
Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs.
Nat Microbiol. 2016 Oct 17;2:16189. doi: 10.1038/nmicrobiol.2016.189.
4
Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA.
Nat Microbiol. 2016 Oct 17;2:16188. doi: 10.1038/nmicrobiol.2016.188.
5
Molecular Mechanisms of Two-Component Signal Transduction.
J Mol Biol. 2016 Sep 25;428(19):3752-75. doi: 10.1016/j.jmb.2016.08.003. Epub 2016 Aug 9.
6
Characterization of Key Helicobacter pylori Regulators Identifies a Role for ArsRS in Biofilm Formation.
J Bacteriol. 2016 Aug 25;198(18):2536-48. doi: 10.1128/JB.00324-16. Print 2016 Sep 15.
7
Helicobacter pylori Diversity and Gastric Cancer Risk.
mBio. 2016 Jan 26;7(1):e01869-15. doi: 10.1128/mBio.01869-15.
8
Helicobacter pylori adaptation in vivo in response to a high-salt diet.
Infect Immun. 2015 Dec;83(12):4871-83. doi: 10.1128/IAI.00918-15. Epub 2015 Oct 5.
9
Alteration of the Helicobacter pylori membrane proteome in response to changes in environmental salt concentration.
Proteomics Clin Appl. 2015 Dec;9(11-12):1021-34. doi: 10.1002/prca.201400176. Epub 2015 Sep 14.
10
The CrdRS two-component system in Helicobacter pylori responds to nitrosative stress.
Mol Microbiol. 2015 Sep;97(6):1128-41. doi: 10.1111/mmi.13089. Epub 2015 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验