Suppr超能文献

综合暴露途径 (AEP) 和不良结局途径 (AOP) 框架在促进人类健康和生态终点综合用于累积风险评估 (CRA) 中的案例研究应用。

A Case Study Application of the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) Frameworks to Facilitate the Integration of Human Health and Ecological End Points for Cumulative Risk Assessment (CRA).

机构信息

U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory , Research Triangle Park, North Carolina 27709, United States.

U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment , Research Triangle Park, North Carolina 27709, United States.

出版信息

Environ Sci Technol. 2018 Jan 16;52(2):839-849. doi: 10.1021/acs.est.7b04940. Epub 2017 Dec 29.

Abstract

Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from multiple stressors. While CSMs may encompass multiple species, evaluating end points across taxa can be challenging due to data availability and physiological differences among organisms. Adverse outcome pathways (AOPs) describe biological mechanisms leading to adverse outcomes (AOs) by assembling causal pathways with measurable intermediate steps termed key events (KEs), thereby providing a framework for integrating data across species. In this work, we used a case study focused on the perchlorate anion (ClO) to highlight the value of the AOP framework for cross-species data integration. Computational models and dose-response data were used to evaluate the effects of ClO in 12 species and revealed a dose-response concordance across KEs and taxa. The aggregate exposure pathway (AEP) tracks stressors from sources to the exposures and serves as a complement to the AOP. We discuss how the combined AEP-AOP construct helps to maximize the use of existing data and advances CRA by (1) organizing toxicity and exposure data, (2) providing a mechanistic framework of KEs for integrating data across human health and ecological end points, (3) facilitating cross-species dose-response evaluation, and (4) highlighting data gaps and technical limitations.

摘要

累积风险评估 (CRA) 方法促进了概念场地模型 (CSM) 的使用,以分配暴露量并整合来自多种胁迫因素的风险。虽然 CSM 可能包含多个物种,但由于数据可用性和生物体之间的生理差异,评估跨分类群的终点可能具有挑战性。 不良结局途径 (AOP) 通过将具有可测量中间步骤(称为关键事件 (KEs) 的因果途径组装在一起,描述导致不良结局 (AOs) 的生物学机制,从而为跨物种数据集成提供了框架。在这项工作中,我们使用了一个以高氯酸盐阴离子 (ClO) 为重点的案例研究,突出了 AOP 框架在跨物种数据集成中的价值。 计算模型和剂量-反应数据用于评估 12 个物种中 ClO 的影响,并揭示了 KEs 和分类群之间的剂量-反应一致性。 综合暴露途径 (AEP) 跟踪从源到暴露的胁迫因素,是 AOP 的补充。 我们讨论了如何通过以下方式来帮助最大程度地利用现有数据并推进 CRA:(1)组织毒性和暴露数据,(2)为整合人类健康和生态终点的 KEs 提供机制框架,(3)促进跨物种剂量-反应评估,以及(4)突出数据差距和技术限制。

相似文献

3
Adverse outcome pathway: a path toward better data consolidation and global co-ordination of radiation research.
Int J Radiat Biol. 2022;98(12):1694-1703. doi: 10.1080/09553002.2021.2020363. Epub 2022 Jan 7.
8
Aggregate Exposure Pathways in Support of Risk Assessment.
Curr Opin Toxicol. 2018 Jun;9:8-13. doi: 10.1016/j.cotox.2018.03.006. Epub 2018 Mar 29.
9
The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Sep;13(5):e1708. doi: 10.1002/wnan.1708. Epub 2021 Mar 25.
10
Is there a role for the adverse outcome pathway framework to support radiation protection?
Int J Radiat Biol. 2019 Feb;95(2):225-232. doi: 10.1080/09553002.2019.1532617. Epub 2018 Oct 29.

引用本文的文献

3
A geospatial modeling approach to quantifying the risk of exposure to environmental chemical mixtures via a common molecular target.
Sci Total Environ. 2023 Jan 10;855:158905. doi: 10.1016/j.scitotenv.2022.158905. Epub 2022 Sep 21.
4
In silico toxicology: From structure-activity relationships towards deep learning and adverse outcome pathways.
Wiley Interdiscip Rev Comput Mol Sci. 2020 Jul-Aug;10(4):e1475. doi: 10.1002/wcms.1475. Epub 2020 Mar 31.
5
approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity.
Comput Toxicol. 2021 Nov;20. doi: 10.1016/j.comtox.2021.100187. Epub 2021 Sep 9.
6
The Exposome and Toxicology: A Win-Win Collaboration.
Toxicol Sci. 2022 Feb 28;186(1):1-11. doi: 10.1093/toxsci/kfab149.
9
Evolving Science and Practice of Risk Assessment.
Risk Anal. 2021 Apr;41(4):571-583. doi: 10.1111/risa.13647. Epub 2020 Dec 8.
10
Quantification of an Adverse Outcome Pathway Network by Bayesian Regression and Bayesian Network Modeling.
Integr Environ Assess Manag. 2021 Jan;17(1):147-164. doi: 10.1002/ieam.4348. Epub 2020 Oct 23.

本文引用的文献

1
Creating a Structured AOP Knowledgebase via Ontology-Based Annotations.
Appl In Vitro Toxicol. 2017 Dec 1;3(4):298-311. doi: 10.1089/aivt.2017.0017.
2
Thiocyanate: a review and evaluation of the kinetics and the modes of action for thyroid hormone perturbations.
Crit Rev Toxicol. 2017 Aug;47(7):537-563. doi: 10.1080/10408444.2017.1281590. Epub 2017 Mar 6.
3
From the exposome to mechanistic understanding of chemical-induced adverse effects.
Environ Int. 2017 Feb;99:97-106. doi: 10.1016/j.envint.2016.11.029. Epub 2016 Dec 8.
4
Pathway-Based Approaches for Environmental Monitoring and Risk Assessment.
Chem Res Toxicol. 2016 Nov 21;29(11):1789-1790. doi: 10.1021/acs.chemrestox.6b00321.
6
A framework for cumulative risk assessment in the 21st century.
Crit Rev Toxicol. 2017 Feb;47(2):85-97. doi: 10.1080/10408444.2016.1211618. Epub 2016 Aug 11.
7
How we can make ecotoxicology more valuable to environmental protection.
Sci Total Environ. 2017 Feb 1;578:228-235. doi: 10.1016/j.scitotenv.2016.07.160. Epub 2016 Aug 6.
10
Aggregate Exposure and Cumulative Risk Assessment--Integrating Occupational and Non-occupational Risk Factors.
J Occup Environ Hyg. 2015;12 Suppl 1(sup1):S112-26. doi: 10.1080/15459624.2015.1060326.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验